Biodiesel Production through the Transesterification of Non-Edible Plant Oils Using Glycerol Separation Technique with AC High Voltage

被引:3
|
作者
Almady, Saad S. [1 ]
Moussa, Ali I. [2 ]
Deef, Mohammed M. [2 ]
Zayed, Moamen F. [2 ]
Al-Sager, Saleh M. [1 ]
Aboukarima, Abdulwahed M. [1 ]
机构
[1] King Saud Univ, Coll Food & Agr Sci, Dept Agr Engn, POB 2460, Riyadh 11451, Saudi Arabia
[2] Agr Res Ctr, Agr Engn Res Inst AENRI, POB 256, Giza, Egypt
关键词
biofuel; jatropha oil; high voltage technique; gravity technique; pongamia oil; JATROPHA-CURCAS; ETHANOL-PRODUCTION; FUEL PROPERTIES; CASTOR PLANT;
D O I
10.3390/su16072896
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The biodiesel industry is a promising field globally, and is expanding significantly and quickly. To create a biodiesel business that is both sustainable and commercially feasible, a number of studies have been conducted on the use of non-edible oils to produce biodiesel. Thus, this study highlights biodiesel synthesis from non-edible plant oils such as pongamia and jatropha using a glycerol separation technique with an AC high voltage method through the transesterification reaction. In this context, non-edible plant oil has emerged as an alternative with a high potential for making the biodiesel process sustainable. Moreover, the study introduces how the created biodiesel fuel behaves when burned in a diesel engine. The results showed that the optimum conditions for creating biodiesel were a temperature of 60 degrees C, a potassium hydroxide catalyst percentage by weight of oils of 1%, and a stirring time of 60 min at a 5:1 (v/v) ratio of methanol to oil. A high-voltage procedure was used to separate glycerol and biodiesel using two electrodes of copper with different distances between them and different high voltages. The results showed that, for a batch of 15 L, the minimum separating time was 10 min when the distance between the copper electrodes was 2.5 cm, and the high voltage was 15 kV. The density, kinematic viscosity, and flash point of jatropha oil were reduced from 0.920 to 0.881 g/cm3 at 15 degrees C, from 37.1 to 4.38 cSt at 40 degrees C, and from 211 to 162 degrees C, respectively, for the production of biodiesel. Additionally, the density, kinematic viscosity, and flash point of pongamia oil were reduced from 0.924 to 0.888 g/cm3 at 15 degrees C, from 27.8 to 5.23 cSt at 40 degrees C, and from 222 to 158 degrees C, respectively, for the production of biodiesel. The calorific value of jatropha oil was increased from 38.08 to 39.65 MJ/kg for the production of biodiesel, while that of pongamia oil was increased from 36.61 to 36.94 MJ/kg. The cetane number increased from 21 for oil to 50 for biodiesel and from 32 for oil to 52 for jatropha and pongamia biodiesel, respectively. In order to run an air-cooled, single-cylinder, four-stroke diesel engine at full load, the produced biodiesel fuel was blended with diesel fuel at different percentages-10, 20, and 30%-for jatropha and pongamia methyl esters. The produced engine power values were 3.91, 3.69, and 3.29 kW for B10, B20, and B30, respectively, compared with the engine power value of jatropha methyl ester, which was 4.12 kW for diesel fuel (B00); meanwhile, the values were 3.70, 3.36, and 3.07 kW for B10, B20 and B30, respectively, for pongamia methyl ester. The findings suggest that the biodiesel derived from non-edible oils, such as pongamia and jatropha, could be a good alternative to diesel fuel.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Biodiesel production from non-edible plant oils
    Demirbas, Ayhan
    Bafail, Abdullah
    Ahmad, Waqar
    Sheikh, Manzoor
    ENERGY EXPLORATION & EXPLOITATION, 2016, 34 (02) : 290 - 318
  • [2] Biodiesel production from non-edible plant oils
    Bankovic-Ilic, Ivana B.
    Starnenkovic, Olivera S.
    Veljkovic, Vlada B.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (06): : 3621 - 3647
  • [3] Non-edible plant oils as new sources for biodiesel production
    Chhetri, Arjun B.
    Tango, Martin S.
    Budge, Suzanne M.
    Watts, K. Chris
    Islam, M. Rafiqul
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2008, 9 (02) : 169 - 180
  • [4] Lipolytic bacterial strains mediated transesterification of non-edible plant oils for generation of high quality biodiesel
    Rana, Qurrat ul Ain
    Rehman, Mian Laiq Ur
    Irfan, Muhammad
    Ahmed, Safia
    Hasan, Fariha
    Shah, Aamer Ali
    Khan, Samiullah
    Badshah, Malik
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2019, 127 (05) : 609 - 617
  • [5] Two Step Process for Biodiesel Production Using Non-Edible Oils
    Dukare, Manesh
    Awasthi, S.
    Sapkal, V.
    Sapkal, R.
    INDIAN CHEMICAL ENGINEER, 2010, 52 (03) : 254 - 262
  • [6] Transesterification of non-edible seed oil for biodiesel production: characterization and analysis of biodiesel
    Fadhil, Abdelrahman B.
    Sedeeq, Saba H.
    Al-Layla, Neam M. T.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2019, 41 (07) : 892 - 901
  • [7] Optimization of biodiesel production from edible and non-edible vegetable oils
    Patil, Prafulla D.
    Deng, Shuguang
    FUEL, 2009, 88 (07) : 1302 - 1306
  • [8] Biodiesel synthesis from non-edible oils by transesterification using the activated carbon as heterogeneous catalyst
    Kamel, D. A.
    Farag, H. A.
    Amin, N. K.
    Fouad, Y. O.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2017, 14 (04) : 785 - 794
  • [9] Biodiesel synthesis from non-edible oils by transesterification using the activated carbon as heterogeneous catalyst
    D. A. Kamel
    H. A. Farag
    N. K. Amin
    Y. O. Fouad
    International Journal of Environmental Science and Technology, 2017, 14 : 785 - 794
  • [10] Transesterification of edible, non-edible and used cooking oils for biodiesel production using calcined layered double hydroxides as reusable base catalysts
    Sankaranarayanan, Sivashunmugam
    Antonyraj, Churchil A.
    Kannan, S.
    BIORESOURCE TECHNOLOGY, 2012, 109 : 57 - 62