RETRACTION: AMLnet, A deep-learning pipeline for the differential diagnosis of acute myeloid leukemia from bone marrow smears (vol 16, 27, 2023)

被引:0
|
作者
Yu, Zebin [1 ,2 ,3 ,4 ]
Li, Jianhu [5 ]
Wen, Xiang [6 ]
Han, Yingli [1 ,2 ,3 ,4 ]
Jiang, Penglei [1 ,2 ,3 ,4 ]
Zhu, Meng [1 ,2 ,3 ,4 ]
Wang, Minmin [7 ]
Gao, Xiangli [5 ]
Shen, Dan [5 ]
Zhang, Ting [5 ]
Zhao, Shuqi [5 ]
Zhu, Yijing [5 ]
Tong, Jixiang [5 ]
Yuan, Shuchong [5 ]
Zhu, Honghu [5 ]
Huang, He [3 ,4 ,8 ]
Qian, Pengxu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 1, Ctr Stem Cell & Regenerat Med, Sch Med, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Affiliated Hosp 1, Bone Marrow Transplantat Ctr, Sch Med, Hangzhou 310058, Peoples R China
[3] Zhejiang Univ, Med Ctr, Liangzhu Lab, 1369 West Wenyi Rd, Hangzhou, Peoples R China
[4] Zhejiang Univ, Inst Hematol, Zhejiang Engn Lab Stem Cell & Immunotherapy, Hangzhou 310058, Peoples R China
[5] Zhejiang Univ, Sch Med, Affiliated Hosp 1, Dept Hematol, Hangzhou, Zhejiang, Peoples R China
[6] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
[7] Zhejiang Univ, Hangzhou Peoples Hosp 1, Dept Hematol, Sch Med, Hangzhou, Zhejiang, Peoples R China
[8] Zhejiang Univ, Sch Med, Affiliated Hosp 1, Bone Marrow Transplantat Ctr, Hangzhou, Peoples R China
关键词
D O I
10.1186/s13045-024-01582-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页数:1
相关论文
共 28 条
  • [1] AMLnet, A deep-learning pipeline for the differential diagnosis of acute myeloid leukemia from bone marrow smears
    Yu, Zebin
    Li, Jianhu
    Wen, Xiang
    Han, Yingli
    Jiang, Penglei
    Zhu, Meng
    Wang, Minmin
    Gao, Xiangli
    Shen, Dan
    Zhang, Ting
    Zhao, Shuqi
    Zhu, Yijing
    Tong, Jixiang
    Yuan, Shuchong
    Zhu, HongHu
    Huang, He
    Qian, Pengxu
    JOURNAL OF HEMATOLOGY & ONCOLOGY, 2023, 16 (01)
  • [2] Deep learning identifies Acute Promyelocytic Leukemia in bone marrow smears
    Eckardt, Jan-Niklas
    Schmittmann, Tim
    Riechert, Sebastian
    Kramer, Michael
    Sulaiman, Anas Shekh
    Sockel, Katja
    Kroschinsky, Frank
    Schetelig, Johannes
    Wagenfuehr, Lisa
    Schuler, Ulrich
    Platzbecker, Uwe
    Thiede, Christian
    Stoelzel, Friedrich
    Roellig, Christoph
    Bornhaeuser, Martin
    Wendt, Karsten
    Middeke, Jan Moritz
    BMC CANCER, 2022, 22 (01)
  • [3] Deep learning identifies Acute Promyelocytic Leukemia in bone marrow smears
    Jan-Niklas Eckardt
    Tim Schmittmann
    Sebastian Riechert
    Michael Kramer
    Anas Shekh Sulaiman
    Katja Sockel
    Frank Kroschinsky
    Johannes Schetelig
    Lisa Wagenführ
    Ulrich Schuler
    Uwe Platzbecker
    Christian Thiede
    Friedrich Stölzel
    Christoph Röllig
    Martin Bornhäuser
    Karsten Wendt
    Jan Moritz Middeke
    BMC Cancer, 22
  • [4] Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status from bone marrow smears
    Eckardt, Jan-Niklas
    Middeke, Jan Moritz
    Riechert, Sebastian
    Schmittmann, Tim
    Sulaiman, Anas Shekh
    Kramer, Michael
    Sockel, Katja
    Kroschinsky, Frank
    Schuler, Ulrich
    Schetelig, Johannes
    Roellig, Christoph
    Thiede, Christian
    Wendt, Karsten
    Bornhaeuser, Martin
    LEUKEMIA, 2022, 36 (01) : 111 - 118
  • [5] Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status from bone marrow smears
    Jan-Niklas Eckardt
    Jan Moritz Middeke
    Sebastian Riechert
    Tim Schmittmann
    Anas Shekh Sulaiman
    Michael Kramer
    Katja Sockel
    Frank Kroschinsky
    Ulrich Schuler
    Johannes Schetelig
    Christoph Röllig
    Christian Thiede
    Karsten Wendt
    Martin Bornhäuser
    Leukemia, 2022, 36 : 111 - 118
  • [6] Deep learning predicts therapy-relevant genetics in acute myeloid leukemia from Pappenheim-stained bone marrow smears
    Kockwelp, Jacqueline
    Thiele, Sebastian
    Bartsch, Jannis
    Haalck, Lars
    Gromoll, Joerg
    Schlatt, Stefan
    Exeler, Rita
    Bleckmann, Annalen
    Lenz, Georg
    Wolf, Sebastian
    Steffen, Bjoern
    Berdel, Wolfgang E.
    Schliemann, Christoph
    Risse, Benjamin
    Angenendt, Linus
    BLOOD ADVANCES, 2024, 8 (01) : 70 - 79
  • [7] Predicting Molecular Alterations from Blast Morphology of Acute Myeloid Leukemia Bone Marrow Aspirate Smears Using Machine Learning
    Vadasz, Brian
    Gao, Juehua
    Lewis, Joshua E.
    Jaye, David L.
    Cooper, Lee A. D.
    BLOOD, 2023, 142
  • [8] Deep Learning-Based Leukemia Diagnosis from Bone Marrow Images
    Zhinin-Vera, Luis
    Moya, Alejandro
    Pretel, Elena
    Astudillo, Jaime
    Jimenez-Ruescas, Javier
    INFORMATION AND COMMUNICATION TECHNOLOGIES, TICEC 2024, 2025, 2273 : 71 - 85
  • [9] Deep Learning Models for the Diagnosis of Acute Lymphoblastic Leukemia from Bone Marrow Images : A Comprehensive Literature Review
    Elsayed, Basel
    Elshoeibi, Amgad
    Elhadary, Mohamed
    Badr, Ahmed
    Metwalli, Omar
    Cherif, Honar
    Mudawi, Deena
    Alshurafa, Awni
    Yassin, Mohamed A.
    BLOOD, 2023, 142
  • [10] Deep learning enhances acute lymphoblastic leukemia diagnosis and classification using bone marrow images
    Elsayed, Basel
    Elhadary, Mohamed
    Elshoeibi, Raghad Mohamed
    Elshoeibi, Amgad Mohamed
    Badr, Ahmed
    Metwally, Omar
    Elsherif, Raghad Alaa
    Salem, Mohamed Elsayed
    Khadadah, Fatima
    Alshurafa, Awni
    Mudawi, Deena
    Yassin, Mohamed
    FRONTIERS IN ONCOLOGY, 2023, 13