Exact and approximation algorithms for covering timeline in temporal graphs

被引:0
|
作者
Dondi, Riccardo [1 ]
Popa, Alexandru [2 ]
机构
[1] Univ Bergamo, Dipartimento Lettere Filosofia Comunicaz, Bergamo, Italy
[2] Univ Bucharest, Dept Comp Sci, Bucharest, Romania
关键词
Timeline cover; Temporal graph; NP-hard problem; Approximation algorithm; FPT algorithm; VERTEX COVER;
D O I
10.1007/s10479-024-05993-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a variant of vertex cover on temporal graphs that has been recently defined for summarization of timeline activities in temporal graphs. The problem has been proved to be NP-hard, even for several restrictions of the time domain and vertex degree. We present novel algorithmic contributions for the problem and we give an approximation algorithm of factor O ( T log n ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(T \log {n})$$\end{document} , on a temporal graph of T timestamps and n vertices. We focus then on the NP-hard restriction of the problem, where at most one temporal edge is defined in each timestamp. For this restriction we present a 4 ( T - 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4(T-1)$$\end{document} approximation algorithm and a parameterized algorithm (a reduction to kernel) for parameter the cost, called span, of the solution.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Timeline Cover in Temporal Graphs: Exact and Approximation Algorithms
    Dondi, Riccardo
    Popa, Alexandru
    COMBINATORIAL ALGORITHMS, IWOCA 2023, 2023, 13889 : 173 - 184
  • [2] New Exact and Approximation Algorithms for the Star Packing Problem in Undirected Graphs
    Babenko, Maxim
    Gusakov, Alexey
    28TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2011), 2011, 9 : 519 - 530
  • [3] Faster exact and approximation algorithms for packing and covering matroids via push-relabel
    Quanrud, Kent
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 2305 - 2336
  • [4] Hardness results, approximation and exact algorithms for liar's domination problem in graphs
    Panda, B. S.
    Paul, S.
    Pradhan, D.
    THEORETICAL COMPUTER SCIENCE, 2015, 573 : 26 - 42
  • [5] Directed Graphs from Exact Covering Systems
    Neidmann, Dana
    JOURNAL OF INTEGER SEQUENCES, 2022, 25 (02)
  • [6] Approximation algorithms for partial covering problems
    Gandhi, R
    Khuller, S
    Srinivasan, A
    AUTOMATA LANGUAGES AND PROGRAMMING, PROCEEDING, 2001, 2076 : 225 - 236
  • [7] Approximation algorithms for partial covering problems
    Gandhi, R
    Khuller, S
    Srinivasan, A
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2004, 53 (01): : 55 - 84
  • [8] Better approximation algorithms for bin covering
    Csirik, J
    Johnson, DS
    Kenyon, C
    PROCEEDINGS OF THE TWELFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2001, : 557 - 566
  • [9] Approximation algorithms for partially covering with edges
    Parekh, Ojas
    THEORETICAL COMPUTER SCIENCE, 2008, 400 (1-3) : 159 - 168
  • [10] Approximation algorithms for the covering Steiner problem
    Konjevod, G
    Ravi, R
    Srinivasan, A
    RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (03) : 465 - 482