COVID-19 mortality prediction in Hungarian ICU settings implementing random forest algorithm

被引:3
|
作者
Hamar, Agoston [1 ,2 ]
Mohammed, Daryan [2 ]
Varadi, Alex [2 ,3 ]
Herczeg, Robert [2 ]
Balazsfalvi, Norbert [4 ]
Fulesdi, Bela [4 ]
Laszlo, Istvan [4 ]
Gomori, Lidia [5 ]
Gergely, Peter Attila [6 ]
Kovacs, Gabor Laszlo [1 ,2 ]
Jakso, Krisztian [7 ]
Gombos, Katalin [1 ,2 ]
机构
[1] Univ Pecs, Med Sch, Dept Lab Med, Pecs, Hungary
[2] Univ Pecs, Szentagotha Res Ctr, Mol Med Res Grp, Pecs, Hungary
[3] Univ Debrecen, Inst Metagenom, Debrecen, Hungary
[4] Univ Debrecen, Dept Anaesthesiol & Intens Care, Debrecen, Hungary
[5] Univ Debrecen, Doctoral Sch Informat, Debrecen, Hungary
[6] Univ Debrecen, Inst Forens Med, Debrecen, Hungary
[7] Univ Pecs, Clin Ctr, Dept Anaesthesiol & Intens Care, Pecs, Hungary
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
SARS-CoV-2; COVID-19; Intensive care unit; Machine learning; Random forest; Mortality prediction;
D O I
10.1038/s41598-024-62791-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The emergence of newer SARS-CoV-2 variants of concern (VOCs) profoundly changed the ICU demography; this shift in the virus's genotype and its correlation to lethality in the ICUs is still not fully investigated. We aimed to survey ICU patients' clinical and laboratory parameters in correlation with SARS-CoV-2 variant genotypes to lethality. 503 COVID-19 ICU patients were included in our study beginning in January 2021 through November 2022 in Hungary. Furthermore, we implemented random forest (RF) as a potential predictor regarding SARS-CoV-2 lethality among 649 ICU patients in two ICU centers. Survival analysis and comparison of hypertension (HT), diabetes mellitus (DM), and vaccination effects were conducted. Logistic regression identified DM as a significant mortality risk factor (OR: 1.55, 95% CI 1.06-2.29, p = 0.025), while HT showed marginal significance. Additionally, vaccination demonstrated protection against mortality (p = 0.028). RF detected lethality with 81.42% accuracy (95% CI 73.01-88.11%, [AUC]: 91.6%), key predictors being PaO2/FiO2 ratio, lymphocyte count, and chest Computed Tomography Severity Score (CTSS). Although a smaller number of patients require ICU treatment among Omicron cases, the likelihood of survival has not proportionately increased for those who are admitted to the ICU. In conclusion, our RF model supports more effective clinical decision-making among ICU COVID-19 patients.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] COVID-19 Patient Health Prediction Using Boosted Random Forest Algorithm
    Iwendi, Celestine
    Bashir, Ali Kashif
    Peshkar, Atharva
    Sujatha, R.
    Chatterjee, Jyotir Moy
    Pasupuleti, Swetha
    Mishra, Rishita
    Pillai, Sofia
    Jo, Ohyun
    FRONTIERS IN PUBLIC HEALTH, 2020, 8
  • [2] COVID-19 ICU mortality prediction: a machine learning approach using SuperLearner algorithm
    Lorenzoni G.
    Sella N.
    Boscolo A.
    Azzolina D.
    Bartolotta P.
    Pasin L.
    Pettenuzzo T.
    De Cassai A.
    Baratto F.
    Toffoletto F.
    De Rosa S.
    Fullin G.
    Peta M.
    Rosi P.
    Polati E.
    Zanella A.
    Grasselli G.
    Pesenti A.
    Navalesi P.
    Gregori D.
    Journal of Anesthesia, Analgesia and Critical Care, 1 (1):
  • [3] COVID-19 Mortality Prediction Using Machine Learning-Integrated Random Forest Algorithm under Varying Patient Frailty
    Cornelius, Erwin
    Akman, Olcay
    Hrozencik, Dan
    MATHEMATICS, 2021, 9 (17)
  • [4] Prediction model and risk scores of ICU admission and mortality in COVID-19
    Zhao, Zirun
    Chen, Anne
    Hou, Wei
    Graham, James M.
    Li, Haifang
    Richman, Paul S.
    Thode, Henry C.
    Singer, Adam J.
    Duong, Tim Q.
    PLOS ONE, 2020, 15 (07):
  • [5] Establishment of prediction models for COVID-19 patients in different age groups based on Random Forest algorithm
    Cui, X.
    Wang, S.
    Jiang, N.
    Li, Z.
    Li, X.
    Jin, M.
    Yang, B.
    Jia, N.
    Hu, G.
    Liu, Y.
    He, Y.
    Zhao, S.
    Yu, Q.
    QJM-AN INTERNATIONAL JOURNAL OF MEDICINE, 2021, 114 (11) : 795 - 801
  • [6] ICU Admission and Mortality Prediction in Severe COVID-19: A Machine Learning Approach
    Crowley, G.
    Kwon, S.
    Mengling, L.
    Nolan, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (09)
  • [7] Random forest regression for prediction of Covid-19 daily cases and deaths in Turkey
    Ozen, Figen
    HELIYON, 2024, 10 (04)
  • [8] A descriptive study of random forest algorithm for predicting COVID-19 patients outcome
    Wang, Jie
    Yu, Heping
    Hua, Qingquan
    Jing, Shuili
    Liu, Zhifen
    Peng, Xiang
    Cao, Cheng'an
    Luo, Yongwen
    PEERJ, 2020, 8
  • [9] Interpretable deep learning for the prediction of ICU admission likelihood and mortality of COVID-19 patients
    Nazir, Amril
    Ampadu, Hyacinth Kwadwo
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [10] Racial Disparities in Pulse Oximetry, in COVID-19 and ICU Settings
    Reep, Carmen A. T.
    Fleuren, Lucas M.
    Heunks, Leo
    Wils, Evert-Jan
    CRITICAL CARE EXPLORATIONS, 2024, 6 (08)