Experimental investigation of freeze-thaw effects on the micropore properties of expansive soil using NMR-SEM techniques

被引:1
|
作者
Yang, Zhongnian [1 ]
Lu, Zhaochi [2 ]
Shi, Wei [1 ]
He, Huan [2 ]
Nie, Xinyi [3 ]
Ling, Xianzhang [4 ]
Zhang, Jin [5 ]
Guan, Da [6 ]
机构
[1] Qingdao Univ Technol, Sch Civil Engn, Qingdao 266000, Shandong, Peoples R China
[2] Southeast Univ, Inst Geotech Engn, Nanjing 2111000, Jiangsu, Peoples R China
[3] Anhui Jianzhu Univ, Sch Environm & Energy Engn, Hefei 230601, Anhui, Peoples R China
[4] Harbin Inst Technol, Sch Civil Engn, Harbin 150000, Heilongjiang, Peoples R China
[5] Suzhou Niumag Analyt Instrument Corp, Suzhou 320500, Jiangsu, Peoples R China
[6] China Energy Baoshen Railway Grp Co Ltd, Baotou 014000, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
Expansive soil; Freeze-thaw cycle; NMR; SEM; Micropore properties; Pore evolution; WATER-CONTENT; MICROSTRUCTURE; PERMEABILITY; CYCLES;
D O I
10.1007/s10035-024-01465-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The deformation of expansive soil in seasonally frozen regions caused by freeze-thaw cycles has severely affected the long-term performance of engineering applications. The alteration of expansive soil microstructure has resulted in many geotechnical engineering failures, such as soil cracking and settlement. Consequently, the micropore contraction and expansion mechanisms of expansive soil have drawn extensive attention. Nuclear Magnetic Resonance (NMR) is widely used as a rapid, non-destructive detection technique for moisture monitoring and microstructure evolution characterization in porous media. In addition, Magnetic Resonance Imaging (MRI) can visualize the migration pattern of pore water under different numbers of freeze-thaw cycles. SEM is the most effective and direct method to reveal the structure of particle and micropore arrangement. This paper investigates the pore size evolution and pore structure distribution characteristics of saturated expansive soil via 6 freeze-thaw cycle tests using NMR and SEM techniques. The evolution law of saturated expansive soil under freeze-thaw cycles is obtained. The results show that pore water migrates from the center to the periphery under freeze-thaw cycles. The pore size decreases as the number of freeze-thaw cycles increases and small particles increase significantly. During the freeze-thaw cycle, the arrangement pattern changed from surface-surface contact to stacking.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Effects on the micropore structure and unfrozen water content in expansive soil under freeze-thaw cycles via low-field NMR
    Yang, Zhongnian
    Lu, Zhaochi
    Shi, Wei
    Ling, Xianzhang
    Liu, Xiu
    Guan, Da
    Zhang, Jin
    GEOMECHANICS AND GEOENGINEERING-AN INTERNATIONAL JOURNAL, 2024, 19 (05): : 705 - 720
  • [2] Effects of Phase Change Materials on the Freeze-Thaw Performance of Expansive Soil
    Chen, Yong
    Huang, Yinghao
    Wang, Shuo
    Mu, Yanhu
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2023, 35 (07)
  • [3] Dynamic Properties of Expansive Soil-Rubber under Freeze-Thaw Cycles
    Yang, Zhongnian
    Lu, Zhaochi
    Shi, Wei
    Wang, Chu
    Ling, Xianzhang
    Liu, Xiu
    Guan, Da
    Cheng, Zhaojie
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2023, 35 (04)
  • [4] Physico-mechanical properties of expansive soil under freeze-thaw cycles
    Xu Lei
    Liu Si-hong
    Lu Yang
    Song Ying-jun
    Yang Qi
    ROCK AND SOIL MECHANICS, 2016, 37 (37) : 167 - 174
  • [5] Effects of freeze-thaw on soil properties and water erosion
    Sun, Baoyang
    Ren, Feipeng
    Ding, Wenfeng
    Zhang, Guanhua
    Huang, Jinquan
    Li, Jianming
    Zhang, Lei
    SOIL AND WATER RESEARCH, 2021, 16 (04) : 205 - 216
  • [6] Experimental investigation of crack evolution in expansive soil-rubber mixture (ESR) under freeze-thaw cycles
    Zhang, Qi
    Xia, Yingjie
    Zhao, Jinchi
    Tang, Chunan
    Zhang, Bo
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2024, 217
  • [7] Experimental Investigation of Crack Evolution in Expansive Soil-Rubber Mixture (Esr) Under Freeze-Thaw Cycles
    Zhang, Qi
    Xia, Yingjie
    Zhao, Jinchi
    Tang, Chun'an
    Zhang, Bo
    SSRN, 2023,
  • [8] Experimental study on the dynamic behavior of expansive soil in slopes under freeze-thaw cycles
    Yang, Zhongnian
    Zhang, Liang
    Ling, Xianzhang
    Li, Guoyu
    Tu, Zhibin
    Shi, Wei
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2019, 163 : 27 - 33
  • [9] Freeze-thaw and wetting-drying effects on the hydromechanical behavior of a stabilized expansive soil
    Ding, Lu-qiang
    Vanapalli, Sai K.
    Zou, Wei-lie
    Han, Zhong
    Wang, Xie-qun
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 275
  • [10] Review and prospect of the effects of freeze-thaw on soil geotechnical properties
    Zhang, Tong
    Li, HaiPeng
    Hu, ChenChen
    Zhen, XinYu
    Xu, ZhenHao
    Xue, Yang
    SCIENCES IN COLD AND ARID REGIONS, 2021, 13 (05): : 349 - 356