Quantum circuit synthesis with diffusion models

被引:5
|
作者
Fuerrutter, Florian [1 ]
Munoz-Gil, Gorka [1 ]
Briegel, Hans J. [1 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, Innsbruck, Austria
基金
欧洲研究理事会; 欧盟地平线“2020”; 奥地利科学基金会;
关键词
Quantum computers;
D O I
10.1038/s42256-024-00831-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum computing has recently emerged as a transformative technology. Yet, its promised advantages rely on efficiently translating quantum operations into viable physical realizations. Here we use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation. Leveraging text conditioning, we steer the model to produce desired quantum operations within gate-based quantum circuits. Notably, DMs allow to sidestep during training the exponential overhead inherent in the classical simulation of quantum dynamics-a consistent bottleneck in preceding machine learning techniques. We demonstrate the model's capabilities across two tasks: entanglement generation and unitary compilation. The model excels at generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision DMs as pivotal in quantum circuit synthesis, both enhancing practical applications and providing insights into theoretical quantum computation. Achieving the promised advantages of quantum computing relies on translating quantum operations into physical realizations. F & uuml;rrutter and colleagues use diffusion models to create quantum circuits that are based on user specifications and tailored to experimental constraints.
引用
收藏
页码:515 / 524
页数:17
相关论文
共 50 条
  • [1] Quantum Hybrid Diffusion Models for Image Synthesis
    De Falco, Francesca
    Ceschini, Andrea
    Sebastianelli, Alessandro
    Le Saux, Bertrand
    Panella, Massimo
    KUNSTLICHE INTELLIGENZ, 2024, : 311 - 326
  • [2] Parallelizing quantum circuit synthesis
    Di Matteo, Olivia
    Mosca, Michele
    QUANTUM SCIENCE AND TECHNOLOGY, 2016, 1 (01):
  • [3] Quantum Denoising Diffusion Models
    Koelle, Michael
    Stenzel, Gerhard
    Stein, Jonas
    Zielinski, Sebastian
    Ommer, Bjoen
    Linnhoff-Popien, Claudia
    2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM SOFTWARE, IEEE QSW 2024, 2024, : 88 - 98
  • [4] Quantum latent diffusion models
    De Falco, Francesca
    Ceschini, Andrea
    Sebastianelli, Alessandro
    Le Saux, Bertrand
    Panella, Massimo
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (02)
  • [5] Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
    Salathe, Y.
    Mondal, M.
    Oppliger, M.
    Heinsoo, J.
    Kurpiers, P.
    Potocnik, A.
    Mezzacapo, A.
    Heras, U. Las
    Lamata, L.
    Solano, E.
    Filipp, S.
    Wallraff, A.
    PHYSICAL REVIEW X, 2015, 5 (02):
  • [6] Automatic Synthesis of Quantum Teleportation Circuit
    Peng, Fei
    Xie, Guang-jun
    Wu, Tian-hao
    ICCIT: 2009 FOURTH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND CONVERGENCE INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2009, : 70 - 74
  • [7] On circuit models for quantum-classical networks
    Csurgay, Arpad I.
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2007, 35 (5-6) : 471 - 484
  • [8] Circuit synthesis of electrochemical supercapacitor models
    Drummond, R.
    Zhao, S.
    Howey, D. A.
    Duncan, S. R.
    JOURNAL OF ENERGY STORAGE, 2017, 10 : 48 - 55
  • [9] A CLASS OF EFFICIENT QUANTUM INCREMENTER GATES FOR QUANTUM CIRCUIT SYNTHESIS
    Li, Xiaoyu
    Yang, Guowu
    Torres, Carlos Manuel, Jr.
    Zheng, Desheng
    Wang, Kang L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (01):
  • [10] Synthesis and optimization by quantum circuit description language
    Zomorodi-Moghadam, Mariam
    Taherkhani, Mohammad-Amin
    Navi, Keivan
    Navi, Keivan (navi@sbu.ac.ir), 1600, Springer Verlag (8911): : 74 - 91