Core-shell NH2-UiO-66@iCOPs with built-in "adsorption engines" for improving CO2 adsorption and conversion

被引:1
|
作者
Liu, Ping [1 ]
Cai, Kaixing [1 ]
Liang, Hua [1 ]
Chen, Peng [1 ]
Tao, Duan-Jian [2 ]
Zhao, Tianxiang [1 ]
机构
[1] Guizhou Univ, Sch Chem & Chem Engn, Key Lab Green Chem & Clean Energy Technol, Guiyang 550025, Peoples R China
[2] Jiangxi Normal Univ, Coll Chem & Chem Engn, Nanchang 330022, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; Metal-organic-frameworks; Covalent organic frameworks; Cyclic carbonate; Core-shell structure; CARBONS; CONSTRUCTION;
D O I
10.1007/s42114-024-00947-x
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Integrating the advantages of metal-organic framework (MOFs) and ionic organic polymers (iCOPs), we fabricated a series of novel hybrid materials (core-shell M@iCOPs) by growing iCOP shell layers of varying thicknesses on the NH2-UiO-66. These M@iCOP hybrids, with NH2-UiO-66 serving as an embedded "adsorption engine," exhibit richer pore channels, which combined with the nitrogen-rich structure and pi-pi stacking interactions in the shell layer of the iCOPs, which led to a significant enhancement of CO2 adsorption with up to 3.33 mmol<middle dot>g(-1) at 0 degrees C and 1 bar. Remarkably, M@iCOPs-400, which possesses abundant ionic and Lewis acid sites, demonstrates excellent performance in CO2 conversion under milder conditions through interfacial synergistic effect, affording various cyclic carbonates in 90-99% yields. Overall, this research provides a straightforward and cost-effective approach for constructing core-shell M@iCOP materials.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Covalently connected core-shell NH2-UiO-66@Br-COFs hybrid materials for CO2 capture and I2 vapor adsorption
    Wang, Jiajia
    Wang, Lizhi
    Wang, You
    Yang, Fan
    Li, Jiawei
    Guan, Xiyuan
    Zong, Junjiang
    Zhou, Fa
    Huang, Jianhan
    Liu, You-Nian
    CHEMICAL ENGINEERING JOURNAL, 2022, 438
  • [2] UiO-66 and UiO-66-NH2 based sensors: Dielectric and FTIR investigations on the effect of CO2 adsorption
    Strauss, Ina
    Chakarova, Kristina
    Mundstock, Alexander
    Mihaylov, Mihail
    Hadjiivanov, Konstantin
    Guschanski, Natalija
    Caro, Juergen
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 302
  • [3] UiO-66-NH2/GO Composite: Synthesis, Characterization and CO2 Adsorption Performance
    Cao, Yan
    Zhang, Hongmei
    Song, Fujiao
    Huang, Tao
    Ji, Jiayu
    Zhong, Qin
    Chu, Wei
    Xu, Qi
    MATERIALS, 2018, 11 (04):
  • [4] Adsorption of arsenite by core-shell K-OMS-2@UiO-66 microspheres: performance and mechanism
    Yu, Wenyi
    Liang, Qianwei
    Yin, Yuwei
    Geng, Junjie
    Chen, Wei
    Tan, Xuanyi
    Luo, Hanjin
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (34) : 14389 - 14400
  • [5] Experimental investigation of CO2 adsorption capacities in bimetallic-doped UiO-66 and UiO-66-NH2 frameworks
    Zhang, Yongjia
    Islam, Md. Amirul
    Saha, Bidyut Baran
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 713
  • [6] Improving CO2 adsorption capacity and CO2/N2 selectivity of UiO-66-NH2 via defect engineering and IL-encapsulation
    Kang, Dong A.
    Murphy, Christian
    Jeong, Hae-Kwon
    MICROPOROUS AND MESOPOROUS MATERIALS, 2024, 369
  • [7] Metal-Organic Framework-Membranized Bicomponent Core-Shell Catalyst HZSM-5@UIO-66-NH2/Pd for CO2 Selective Conversion
    Pan, Xinbo
    Xu, Haitao
    Zhao, Xi
    Zhang, Huaqian
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (02) : 1087 - 1094
  • [8] Selective adsorption and separation of dyes from aqueous solution by core-shell structured NH2-functionalized UiO-66 magnetic composites
    Yang, Zhibo
    Zhu, Liang
    Chen, Lin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 539 : 76 - 86
  • [9] Selective adsorption of cationic dyes by UiO-66-NH2
    Chen, Qi
    He, Qinqin
    Lv, Mengmeng
    Xu, Yanli
    Yang, Hanbiao
    Liu, Xueting
    Wei, Fengyu
    APPLIED SURFACE SCIENCE, 2015, 327 : 77 - 85
  • [10] Synthesis, characterization and adsorption ability of UiO-66-NH2
    Cam Loc Luu
    Thi Thuy Van Nguyen
    Tri Nguyen
    Tien Cuong Hoang
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2015, 6 (02)