On the genus and crosscap two coannihilator graph of commutative rings

被引:1
|
作者
Nazim, Mohd [1 ]
Mir, Shabir Ahmad [2 ]
Rehman, Nadeem Ur [2 ]
机构
[1] JSPM Univ, Fac Sci & Technol, Sch Basic & Appl Sci, Pune 412207, India
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 06期
关键词
Zero-divisor graph; Cozero-divisor graph; Coannihilator graph; Genus of a graph; Crosscap of a graph; DIVISOR GRAPH; CLASSIFICATION;
D O I
10.1007/s40314-024-02872-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a commutative ring with unity denoted as R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {R}$$\end{document}, and let W(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W(\mathscr {R})$$\end{document} represent the set of non-unit elements in R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {R}$$\end{document}. The coannihilator graph of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {R}$$\end{document}, denoted as AG '(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AG'(\mathscr {R})$$\end{document}, is a graph defined on the vertex set W(R)& lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W(\mathscr {R})<^>*$$\end{document}. This graph captures the relationships among non-unit elements. Specifically, two distinct vertices, x and y, are connected in AG '(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AG'(\mathscr {R})$$\end{document} if and only if either x is not an element of xyR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \notin xy\mathscr {R}$$\end{document} or y is not an element of xyR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y \notin xy\mathscr {R}$$\end{document}, where wR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\mathscr {R}$$\end{document} denotes the principal ideal generated by w is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w \in \mathscr {R}$$\end{document}. In the context of this paper, the primary objective is to systematically classify finite rings R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {R}$$\end{document} based on distinct characteristics of their coannihilator graph. The focus is particularly on cases where the coannihilator graph exhibits a genus or crosscap of two. Additionally, the research endeavors to provide a comprehensive characterization of finite rings R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {R}$$\end{document} for which the connihilator graph AG '(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AG'(\mathscr {R})$$\end{document} attains an outerplanarity index of two.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] ON THE PLANARITY, GENUS, AND CROSSCAP OF THE WEAKLY ZERO-DIVISOR GRAPH OF COMMUTATIVE RINGS
    Rehman, Nadeem ur
    Nazim, Mohd
    Mir, Shabir ahmad
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2024, 67 (01): : 213 - 227
  • [2] On the planarity, genus and crosscap of new extension of zero-divisor graph of commutative rings
    Rehman, Nadeem Ur
    Nazim, Mohd
    Selvakumar, K.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (01) : 61 - 68
  • [3] The Coannihilator Graph of a Commutative Ring
    Afkhami, M.
    Khashyarmanesh, K.
    Rajabi, Z.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2019, 43 (01) : 1 - 11
  • [4] Crosscap two of class of graphs from commutative rings
    Karthik, S.
    Meera, S. N.
    Selvakumar, K.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (08)
  • [5] On the genus of the essential graph of commutative rings
    Selvakumar, K.
    Subajini, M.
    Nikmehr, M. J.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 74 : 74 - 85
  • [6] ON THE GENUS OF CAYLEY GRAPH OF IDEALS OF A COMMUTATIVE RINGS
    Selvakumar, K.
    Subbulakshmi, P.
    ARS COMBINATORIA, 2019, 147 : 215 - 235
  • [7] Classification of Rings with Toroidal and Projective Coannihilator Graph
    Alanazi, Abdulaziz M.
    Nazim, Mohd
    Ur Rehman, Nadeem
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [8] On metric dimension and crosscap analysis of sum-annihilating essential ideal graph of commutative rings
    Rehman, Nadeem ur
    Mir, Shabir Ahmad
    Nazim, Mohd
    Nazim, Nazim
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2025, 19 (01):
  • [9] Commutative rings with genus two annihilator graphs
    Selvakumar, K.
    Subajini, M.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) : 28 - 37
  • [10] On the genus of reduced cozero-divisor graph of commutative rings
    Jesili, E.
    Selvakumar, K.
    Chelvam, T. Tamizh
    SOFT COMPUTING, 2023, 27 (02) : 657 - 666