ConvStabNet: a CNN-based approach for the prediction of local stabilization parameter for SUPG scheme

被引:1
|
作者
Yadav, Sangeeta [1 ]
Ganesan, Sashikumaar [1 ]
机构
[1] Indian Inst Sci, Dept Computat & Data Sci, Bangalore 560012, Karnataka, India
关键词
Singularly perturbed PDEs; Convolutional neural network; NEURAL-NETWORKS; STOKES;
D O I
10.1007/s10092-024-00597-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents ConvStabNet, a convolutional neural network designed to predict optimal stabilization parameters for each cell in the Streamline Upwind Petrov Galerkin (SUPG) stabilization scheme. ConvStabNet employs a shared parameter approach, allowing the network to understand the relationships between cell characteristics and their corresponding stabilization parameters while efficiently handling the parameter space. Comparative analyses with state-of-the-art neural network solvers based on variational formulations highlight the superior performance of ConvStabNet. To improve the accuracy of SUPG in solving partial differential equations (PDEs) with interior and boundary layers, ConvStabNet incorporates a loss function that combines a strong residual component with a cross-wind derivative term. The findings confirm ConvStabNet as a promising method for accurately predicting stabilization parameters in SUPG, thereby marking it as an advancement over neural network-based PDE solvers.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A CNN-based temperature prediction approach for grain storage
    Ge L.
    Chen C.
    Li Y.
    Mo T.
    Li W.
    Int. J. Internet Manuf. Serv., 2020, 4 (345-357): : 345 - 357
  • [2] CNN-based local motion estimation chip for image stabilization processing
    Lin, Chin-Teng
    Chen, Shi-An
    Cheng, Ying-Chang
    Chung, Jen-Feng
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 2645 - +
  • [3] CNN-based received signal strength prediction: A frequency conversion scheme
    Huang, Siyi
    Zhang, Xingqi
    ELECTRONICS LETTERS, 2023, 59 (07)
  • [4] A CNN-based Path Trajectory Prediction Approach with Safety Constraints
    Zaman, Mostafa
    Zohrabi, Nasibeh
    Abdelwahed, Sherif
    2020 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO (ITEC), 2020, : 267 - 272
  • [5] CNN-based local motion estimation for image stabilization processing and its implementation
    Chin-Teng Lin
    Shi-An Chen
    Ying-Chang Cheng
    Chao-Ting Hong
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 1816 - +
  • [6] pcPromoter-CNN: A CNN-Based Prediction and Classification of Promoters
    Shujaat, Muhammad
    Wahab, Abdul
    Tayara, Hilal
    Chong, Kil To
    GENES, 2020, 11 (12) : 1 - 11
  • [7] Deep CNN-based local dimming technology
    Tao Zhang
    Hao Wang
    Wenli Du
    Meng Li
    Applied Intelligence, 2022, 52 : 903 - 915
  • [8] Deep CNN-based local dimming technologys
    Zhang, Tao
    Wang, Hao
    Du, Wenli
    Li, Meng
    APPLIED INTELLIGENCE, 2022, 52 (01) : 903 - 915
  • [9] CNN-Based Priority Prediction of Bug Reports
    Rathnayake, R. M. D. S.
    Kumara, B. T. G. S.
    Ekanayake, E. M. U. W. J. B.
    2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA), 2021,
  • [10] SUPG-based stabilization using a separated representations approach
    D. González
    L. Debeugny
    E. Cueto
    F. Chinesta
    P. Díez
    A. Huerta
    International Journal of Material Forming, 2010, 3 : 883 - 886