Landslide type inference based on statistical analysis of a high-resolution digital elevation model in Gorce National Park, Poland

被引:1
|
作者
Robert Szczepanek [1 ]
Mateusz Szczęch [1 ]
Maciej Kania [1 ]
机构
[1] Jagiellonian University,Institute of Geological Sciences, Faculty of Geography and Geology
关键词
D O I
10.1038/s41598-024-65026-z
中图分类号
学科分类号
摘要
High-resolution digital elevation models are commonly utilized for detecting and classifying landslides. In this study, we aim to refine landslide detection and classification by analyzing the geometry of landslides using slope and aspect, coupled with descriptive statistics up to the fourth central moment (kurtosis). Employing the Monte Carlo method for creating terrain topography probability distributions and ANOVA tests for statistical validation, we analyzed 364 landslides in Gorce National Park, Poland, revealing significant kurtosis differences across landslide types and lithologies. This methodology offers a novel approach to landslide classification based on surface geometry, with implications for enhancing scientific research and improving landslide risk management strategies.
引用
收藏
相关论文
共 50 条
  • [1] Landslide type inference based on statistical analysis of a high-resolution digital elevation model in Gorce National Park, Poland
    Szczepanek, Robert
    Szczech, Mateusz
    Kania, Maciej
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] High resolution digital elevation model analysis for landslide hazard assessment (Akerneset, Norway)
    Derron, MH
    Blikra, LH
    Jaboyedoff, M
    Landslides and Avalanches: ICFL 2005 Norway, 2005, : 101 - 106
  • [3] Multiresolution statistical analysis of high-resolution digital mammograms
    Heine, JJ
    Deans, SR
    Cullers, DK
    Stauduhar, R
    Clarke, LP
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (05) : 503 - 515
  • [4] Planation surface extraction and quantitative analysis based on high-resolution digital elevation models
    Wang, YX
    Pan, BT
    Gao, HS
    Liu, Y
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 5369 - 5371
  • [5] Modern High-Resolution Digital Elevation Model of the Kara Sea Bottom
    Nedospasov, A. A.
    Shchuka, S. A.
    Shchuka, A. S.
    OCEANOLOGY, 2023, 63 (SUPPL 1) : S111 - S118
  • [6] High-Resolution LiDAR Digital Elevation Model Referenced Landslide Slide Observation with Differential Interferometric Radar, GNSS, and Underground Measurements
    Wang, Kuo-Lung
    Lin, Jun-Tin
    Chu, Hsun-Kuang
    Chen, Chao-Wei
    Lu, Chia-Hao
    Wang, Jyun-Yen
    Lin, Hsi-Hung
    Chi, Chung-Chi
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [7] Improving GEDI Footprint Geolocation Using a High-Resolution Digital Elevation Model
    Schleich, Anouk
    Durrieu, Sylvie
    Soma, Maxime
    Vega, Cedric
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 7718 - 7732
  • [8] Shaping the Global High-Resolution TanDEM-X Digital Elevation Model
    Huber, Martin
    Osterkamp, Nicole
    Marschalk, Ursula
    Tubbesing, Raphael
    Wendleder, Anna
    Wessel, Birgit
    Roth, Achim
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 7198 - 7212
  • [9] The first sub-meter resolution digital elevation model of the Kruger National Park, South Africa
    Heckel, Kai
    Urban, Marcel
    Bouffard, Jean-Sebastien
    Baade, Jussi
    Boucher, Peter
    Davies, Andrew
    Hockridge, Evan G.
    Luck, Wolfgang
    Ziemer, Jonas
    Smit, Izak
    Jacobs, Bernhard
    Norris-Rogers, Mark
    Schmullius, Christiane
    KOEDOE, 2021, 63 (01):
  • [10] Feature-Fusion Segmentation Network for Landslide Detection Using High-Resolution Remote Sensing Images and Digital Elevation Model Data
    Liu, Xinran
    Peng, Yuexing
    Lu, Zili
    Li, Wei
    Yu, Junchuan
    Ge, Daqing
    Xiang, Wei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61