Degenerate Complex Monge-Ampere Equations on Some Compact Hermitian Manifolds

被引:0
|
作者
Alehyane, Omar [1 ]
Lu, Chinh H. [2 ]
Salouf, Mohammed [1 ]
机构
[1] Univ Chouaib Doukkali, Fac Sci El Jadida, Lab Informat Math & Leurs Applicat LIMA, El Jadida 24000, Morocco
[2] Univ Angers UA, Lab Angevin Rech Math LAREMA, 2 Blvd Lavoisier, F-49000 Angers, France
关键词
Monge-Ampere equations; Hermitian manifolds; Weak solutions; Convergence in capacity; K-ENERGY; PLURISUBHARMONIC ENVELOPES; KAHLER-METRICS; GEODESIC RAYS; SINGULARITY; CURVATURE; CONVEXITY; SPACE;
D O I
10.1007/s12220-024-01772-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a compact complex manifold which admits a hermitian metric satisfying a curvature condition introduced by Guan-Li. Given a semipositive form theta with positive volume, we define the Monge-Amp & egrave;re operator for unbounded theta-psh functions and prove that it is continuous with respect to convergence in capacity. We then develop pluripotential tools to study degenerate complex Monge-Ampere equations in this context, extending recent results of Tosatti-Weinkove, Kolodziej-Nguyen, Guedj-Lu and many others who treat bounded solutions.
引用
收藏
页数:22
相关论文
共 50 条