Signature flips in time-varying Λ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda (t)$$\end{document} cosmological models with observational data

被引:0
|
作者
Yerlan Myrzakulov [1 ]
M. Koussour [2 ]
M. Karimov [3 ]
J. Rayimbaev [4 ]
机构
[1] L.N. Gumilyov Eurasian National University,Department of General and Theoretical Physics
[2] Ratbay Myrzakulov Eurasian International Center for Theoretical Physics,Department of Physics
[3] University of Hassan II Casablanca,Faculty of Mathematics
[4] Namangan State University,undefined
[5] New Uzbekistan University,undefined
[6] University of Tashkent for Applied Sciences,undefined
[7] Fundamental and Applied Research,undefined
[8] National Research University TIIAME,undefined
来源
关键词
D O I
10.1140/epjc/s10052-024-13019-7
中图分类号
学科分类号
摘要
In this study, we investigate signature flips within the framework of cosmological models featuring a time-varying vacuum energy term Λ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda (t)$$\end{document}. Specifically, we consider the power-law form of Λ=αHn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda =\alpha H^n$$\end{document}, where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and n are constants. To constrain the model parameters, we use the MCMC technique, allowing for effective exploration of the model’s parameters. We apply this approach to analyze 31 points of observational Hubble Data (OHD), 1048 points from the Pantheon data, and additional CMB data. We consider three scenarios: when n is a free parameter (Case I), when n=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=0$$\end{document} (Case II), and when n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document} (Case III). In our analysis across all three cases, we observe that our model portrays the universe’s evolution from a matter-dominated decelerated epoch to an accelerated epoch, as indicated by the corresponding deceleration parameter. In addition, we investigate the physical behavior of total energy density, total EoS parameter, and jerk parameter. Our findings consistently indicate that all cosmological parameters predict an accelerated expansion phase of the universe for all three cases (q0<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_0<0$$\end{document}, ω0<-13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0<-\frac{1}{3}$$\end{document}, j0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j_0>0$$\end{document}). Furthermore, our analysis reveals that the Om(z) diagnostics for Cases I and III align with the quintessence region, while Case II corresponds to the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}CDM model.
引用
收藏
相关论文
共 50 条