In-situ X-ray computed tomography of high-temperature tensile behavior for laser powder bed fused Invar 36 alloy

被引:3
|
作者
Yang, Qidong [1 ]
Wei, Kai [1 ,3 ]
Qu, Zhaoliang [2 ]
Yang, Xujing [1 ]
Fang, Daining [2 ]
机构
[1] Hunan Univ, Key Lab Adv Design & Simulat Tech Special Equipmen, Minist Educ, Changsha 410082, Peoples R China
[2] Beijing Inst Technol, Inst Adv Struct Technol, Beijing 100081, Peoples R China
[3] Cent South Univ, State Key Lab Precis Mfg Extreme Serv Performance, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser powder bed fusion; Invar; 36; alloy; High-temperature tensile behavior; Pore defects; Nanoprecipitate; THERMAL-EXPANSION COEFFICIENTS; STAINLESS-STEEL; YIELD STRENGTH; STRAIN-RATE; 316L; MICROSTRUCTURE; DEFORMATION; INCLUSIONS;
D O I
10.1016/j.addma.2024.104072
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The laser powder bed fusion (PBF-LB) process provides great potential for additive manufacturing of Invar 36 alloy, which possesses a unique low coefficient of thermal expansion. However, the high-temperature tensile behavior of PBF-LB processed Invar 36 alloy has not been explored, severely restricting its applications. Hence, herein, in-situ X-ray computed tomography (XCT) tensile tests were conducted at 200 degrees C and 600 degrees C for PBF-LB processed Invar 36 alloy, and the microstructure after heat treatment, fracture morphology, post -mortem microstructure, and nano-precipitates were observed. The in-situ XCT analysis of damage evolution reveals that the tensile behavior at elevated temperatures is sensitive to numerous closely spaced lack-of-fusion (LOF) pores with relatively large equivalent diameters, distributed in the adjacent melt pools or deposited layers. These LOF pores promote the stress concentration and facilitate rapid crack propagation, resulting in a significantly diminished strength and ductility. In contrast, the small number of metallurgical and keyhole pores, possessing large spacing and relatively high sphericity, have negligible influence on the tensile behavior. Therefore, Invar 36 alloy with only metallurgical and keyhole pores can be considered defect-free, displaying an excellent yield strength of 360.0 MPa and a considerable elongation of 65.0% at 200 degrees C. However, as the temperature increases to 600 degrees C, both the yield strength and elongation show a marked decrease to 150.0 MPa and 5.4%, respectively. This weakening is accompanied by the observation of a brittle fracture and the formation of secondary cracks. The degradation in mechanical properties can be attributed to the decomposition of Cr-containing SiP2O7, which leads to the formation of numerous small-sized SiO2 and P2O5 precipitates at 600 degrees C. These precipitates induce embrittlement of the grain boundaries and contribute to the formation of secondary cracks. The anomalous brittle fracture observed is attributed to the intergranular fracture mode, which results from the low grain boundary energy as well as the decomposition of nanoprecipitates. Additionally, the perpendicular orientation of flatter columnar grain boundaries to the loading direction plays a role in the formation of secondary cracks. This high-temperature mechanical performance of strength, elongation, failure mode, and corresponding microcosmic mechanism advances the understanding and widespread application of PBF-LB processed Invar 36 alloy.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Influence of Manufacturing Defects on Mechanical Behavior of the Laser Powder Bed Fused Invar 36 Alloy: In-Situ X-ray Computed Tomography Studies
    Yang, Shuo
    Yang, Qidong
    Qu, Zhaoliang
    Wei, Kai
    MATERIALS, 2023, 16 (08)
  • [2] In-situ X-ray computed tomography tensile tests and analysis of damage mechanism and mechanical properties in laser powder b e d fused Invar 36 alloy
    Yang, Qidong
    Yang, Shuo
    Ma, Shiyu
    Zhou, Junhan
    Zhou, Ye
    Huang, Rongzheng
    Wei, Kai
    Qu, Zhaoliang
    Yang, Xujing
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 175 : 29 - 46
  • [3] A Modified Losipescu Method for Evaluating In-Situ Shear Behavior Using High-Temperature X-Ray Computed Tomography
    Lu, W.
    Li, X.
    Du, W.
    Huang, R.
    Chen, Y.
    Qu, Z.
    EXPERIMENTAL MECHANICS, 2025,
  • [4] High-temperature behavior of natural ferrierite: In-situ synchrotron X-ray powder diffraction study
    Arletti, Rossella
    Fantini, Riccardo
    Giacobbe, Carlotta
    Giere, Reto
    Vezzalini, Giovanna
    Vigliaturo, Ruggero
    Quartieri, Simona
    AMERICAN MINERALOGIST, 2018, 103 (11) : 1741 - 1748
  • [5] MIST – Mechanical In-situ Stage with Temperature control for X-ray computed tomography
    Maurer, Julia
    Heupl, Sarah
    Kendel, Manuel
    Holzleitner, Martin
    Glinz, Jonathan
    Senck, Sascha
    Auer, Jaqueline
    Kastner, Johann
    e-Journal of Nondestructive Testing, 2023, 28 (03):
  • [6] Tensile behavior of needle-punched nonwoven geotextiles based on in-situ X-ray computed tomography and numerical simulation
    Li, Ke-Yi
    Tang, Xiao-Wu
    Fei, Min-Liang
    Feng, Shi-jin
    Tang, Jia-jie
    Xiang, Qing-Qing
    Wang, Heng-yu
    GEOTEXTILES AND GEOMEMBRANES, 2024, 52 (06) : 1251 - 1263
  • [7] IN-SITU FRAGMENT ANALYSIS WITH X-RAY COMPUTED TOMOGRAPHY, XCT
    Wells, J. M.
    ADVANCES IN CERAMIC ARMOR III, 2008, 25 (05): : 181 - 192
  • [8] In-Situ Combustion Dynamics Visualized With X-Ray Computed Tomography
    Hascakir, B.
    Glatz, G.
    Castanier, L. M.
    Kovscek, A. R.
    SPE JOURNAL, 2011, 16 (03): : 524 - 536
  • [9] In-situ X-ray diffraction study on β-CrOOH at high pressure and high-temperature
    Shito, Chikara
    Okamoto, Keitaro
    Sato, Yuki
    Watanabe, Ryuji
    Ohashi, Tomonori
    Fuchizaki, Kazuhiro
    Kuribayashi, Takahiro
    Suzuki, Akio
    HIGH PRESSURE RESEARCH, 2019, 39 (03) : 499 - 508
  • [10] High cycle fatigue behaviour of Invar 36 alloy fabricated by laser powder bed fusion
    Zhang, Chi
    Zhou, Ye
    Wei, Kai
    Yang, Qidong
    Zhou, Junhan
    Zhou, Hao
    Zhang, Xiaoyu
    Yang, Xujing
    VIRTUAL AND PHYSICAL PROTOTYPING, 2023, 18 (01)