Effectively Heterogeneous Federated Learning: A Pairing and Split Learning Based Approach

被引:2
|
作者
Shen, Jinglong [1 ]
Wang, Xiucheng [1 ]
Cheng, Nan [1 ]
Ma, Longfei [1 ]
Zhou, Conghao [2 ]
Zhang, Yuan [3 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, Xian, Peoples R China
[2] Univ Waterloo, Dept Elect Comp Engn, Waterloo, ON, Canada
[3] Univ Elect Sci & Technol China, Sch CSE, Chengdu, Peoples R China
关键词
Federated learning; split learning; client heterogeneity; client-pairing; greedy;
D O I
10.1109/GLOBECOM54140.2023.10437666
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated Learning (FL) is a promising paradigm widely used in privacy-preserving machine learning. It enables distributed devices to collaboratively train a model while avoiding data transfer between clients. Nevertheless, FL suffers from bottlenecks in training speed due to client heterogeneity, resulting in increased training latency and server aggregation lagging. To address this issue, a novel Split Federated Learning (SFL) framework is proposed. It pairs clients with different computational resources based on their computational resources and inter-client communication rates. The neural network model is split into two parts at the logical level, and each client computes only its assigned part using Split Learning (SL) to accomplish forward inference and backward training. Besides, a heuristic greedy algorithm is proposed to effectively deal with the client pairing problem by reconstructing the training latency optimization as a graph edge selection problem. Simulation results show that the proposed method can significantly improve the FL training speed and achieve high performance in both independent identical distribution (IID) and Non-IID data distribution.
引用
收藏
页码:5847 / 5852
页数:6
相关论文
共 50 条
  • [1] DFL: Dynamic Federated Split Learning in Heterogeneous IoT
    Samikwa, Eric
    Di Maio, Antonio
    Braun, Torsten
    IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2 : 733 - 752
  • [2] Wireless Distributed Learning: A New Hybrid Split and Federated Learning Approach
    Liu, Xiaolan
    Deng, Yansha
    Mahmoodi, Toktam
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (04) : 2650 - 2665
  • [3] A Superquantile Approach to Federated Learning with Heterogeneous Devices
    Laguel, Yassine
    Pillutla, Krishna
    Malick, Jerome
    Harchaoui, Zaid
    2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2021,
  • [4] Heterogeneous Training Intensity for Federated Learning: A Deep Reinforcement Learning Approach
    Zeng, Manying
    Wang, Xiumin
    Pan, Weijian
    Zhou, Pan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (02): : 990 - 1002
  • [5] Heterogeneous Federated Learning Based on Graph Hypernetwork
    Xu, Zhengyi
    Yang, Liu
    Gu, Shiqiao
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III, 2023, 14256 : 464 - 476
  • [6] Split Consensus Federated Learning: An Approach for Distributed Training and Inference
    Tedeschini, Bernardo Camajori
    Brambilla, Mattia
    Nicoli, Monica
    IEEE ACCESS, 2024, 12 : 119535 - 119549
  • [7] An efficient personalized federated learning approach in heterogeneous environments: a reinforcement learning perspective
    Yang, Hongwei
    Li, Juncheng
    Hao, Meng
    Zhang, Weizhe
    He, Hui
    Sangaiah, Arun Kumar
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] Walk for Learning: A Random Walk Approach for Federated Learning From Heterogeneous Data
    Ayache, Ghadir
    Dassari, Venkat
    El Rouayheb, Salim
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (04) : 929 - 940
  • [9] Core network traffic prediction based on vertical federated learning and split learning
    Pengyu Li
    Chengwei Guo
    Yanxia Xing
    Yingji Shi
    Lei Feng
    Fanqin Zhou
    Scientific Reports, 14
  • [10] Core network traffic prediction based on vertical federated learning and split learning
    Li, Pengyu
    Guo, Chengwei
    Xing, Yanxia
    Shi, Yingji
    Feng, Lei
    Zhou, Fanqin
    SCIENTIFIC REPORTS, 2024, 14 (01)