Factors for increasing positive predictive value of pneumothorax detection on chest radiographs using artificial intelligence

被引:1
|
作者
Lee, Seungsoo [1 ,2 ]
Kim, Eun-Kyung [1 ,2 ]
Han, Kyunghwa [3 ]
Ryu, Leeha [4 ]
Lee, Eun Hye [5 ]
Shin, Hyun Joo [1 ,2 ,6 ]
机构
[1] Yonsei Univ, Yongin Severance Hosp, Res Inst Radiol Sci, Dept Radiol,Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[2] Yonsei Univ, Yongin Severance Hosp, Ctr Clin Imaging Data Sci, Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[3] Yonsei Univ, Severance Hosp, Res Inst Radiol Sci, Dept Radiol,Coll Med, 50-1 Yonsei Ro, Seoul 03722, South Korea
[4] Yonsei Univ, Grad Sch, Dept Biostat & Comp, 50-1 Yonsei Ro, Seoul 03722, South Korea
[5] Yonsei Univ, Yongin Severance Hosp, Dept Internal Med, Div Pulmonol Allergy & Crit Care Med,Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[6] Yonsei Univ, Yongin Severance Hosp, Ctr Digital Hlth, Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Pneumothorax; Artificial intelligence; Lung; Software; Predictive value of tests;
D O I
10.1038/s41598-024-70780-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study evaluated the positive predictive value (PPV) of artificial intelligence (AI) in detecting pneumothorax on chest radiographs (CXRs) and its affecting factors. Patients determined to have pneumothorax on CXR by a commercial AI software from March to December 2021 were included retrospectively. The PPV was evaluated according to the true-positive (TP) and false-positive (FP) diagnosis determined by radiologists. To know the factors that might influence the results, logistic regression with generalized estimating equation was used. Among a total of 87,658 CXRs, 308 CXRs with 331 pneumothoraces from 283 patients were finally included. The overall PPV of AI about pneumothorax was 41.1% (TF:FP = 136:195). The PA view (odds ratio [OR], 29.837; 95% confidence interval [CI], 15.062-59.107), high abnormality score (OR, 1.081; 95% CI, 1.066-1.097), large amount of pneumothorax (OR, 1.005; 95% CI, 1.003-1.007), presence of ipsilateral atelectasis (OR, 3.508; 95% CI, 1.509-8.156) and a small amount of ipsilateral pleural effusion (OR, 5.277; 95% CI, 2.55-10.919) had significant effects on the increasing PPV. Therefore, PPV for pneumothorax diagnosis using AI can vary based on patients' factors, image-acquisition protocols, and the presence of concurrent lesions on CXR.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Evaluation of an Artificial Intelligence Model for Detection of Pneumothorax and Tension Pneumothorax in Chest Radiographs
    Hillis, James M.
    Bizzo, Bernardo C.
    Mercaldo, Sarah
    Chin, John K.
    Newbury-Chaet, Isabella
    Digumarthy, Subba R.
    Gilman, Matthew D.
    Muse, Victorine V.
    Bottrell, Georgie
    Seah, Jarrel C. Y.
    Jones, Catherine M.
    Kalra, Mannudeep K.
    Dreyer, Keith J.
    JAMA NETWORK OPEN, 2022, 5 (12)
  • [2] Impact of Confounding Thoracic Tubes and Pleural Dehiscence Extent on Artificial Intelligence Pneumothorax Detection in Chest Radiographs
    Rueckel, Johannes
    Trappmann, Lena
    Schachtner, Balthasar
    Wesp, Philipp
    Hoppe, Boj Friedrich
    Fink, Nicola
    Ricke, Jens
    Dinkel, Julien
    Ingrisch, Michael
    Sabel, Bastian Oliver
    INVESTIGATIVE RADIOLOGY, 2020, 55 (12) : 792 - 798
  • [3] Artificial Intelligence for the Detection of Pneumothorax on Chest Radiograph: Not yet the Panacea
    Chassagnon, Guillaume
    Soyer, Philippe
    CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2024, 75 (03): : 458 - 459
  • [4] Artificial Intelligence-Based Detection of Pneumonia in Chest Radiographs
    Becker, Judith
    Decker, Josua A.
    Roemmele, Christoph
    Kahn, Maria
    Messmann, Helmut
    Wehler, Markus
    Schwarz, Florian
    Kroencke, Thomas
    Scheurig-Muenkler, Christian
    DIAGNOSTICS, 2022, 12 (06)
  • [5] Pneumothorax Detection in Chest Radiographs Using Convolutional Neural Networks
    Aviel, Blumenfeld
    Eli, Konen
    Hayit, Greenspan
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [6] Utility of artificial intelligence for pneumothorax detection on chest radiographs performed after computed tomography guided percutaneous transthoracic biopsy
    Ferrando Blanco, D.
    Persiva Morenza, O.
    Cabanzo Campos, L. B.
    Sanchez Martinez, A. L.
    Varona Porres, D.
    Bellido Vargas, L. A. Del Carpio
    Andreu Soriano, J.
    RADIOLOGIA, 2024, 66 : S40 - S46
  • [7] Detection of pneumothorax on ultrasound using artificial intelligence
    Montgomery, Sean
    Li, Forrest
    Funk, Christopher
    Peethumangsin, Erica
    Morris, Michael
    Anderson, Jess T.
    Hersh, Andrew M.
    Aylward, Stephen
    JOURNAL OF TRAUMA AND ACUTE CARE SURGERY, 2023, 94 (03): : 379 - 384
  • [8] Pneumothorax detection in chest radiographs: optimizing artificial intelligence system for accuracy and confounding bias reduction using in-image annotations in algorithm training
    Rueckel, Johannes
    Huemmer, Christian
    Fieselmann, Andreas
    Ghesu, Florin-Cristian
    Mansoor, Awais
    Schachtner, Balthasar
    Wesp, Philipp
    Trappmann, Lena
    Munawwar, Basel
    Ricke, Jens
    Ingrisch, Michael
    Sabel, Bastian O.
    EUROPEAN RADIOLOGY, 2021, 31 (10) : 7888 - 7900
  • [9] Pneumothorax detection in chest radiographs: optimizing artificial intelligence system for accuracy and confounding bias reduction using in-image annotations in algorithm training
    Johannes Rueckel
    Christian Huemmer
    Andreas Fieselmann
    Florin-Cristian Ghesu
    Awais Mansoor
    Balthasar Schachtner
    Philipp Wesp
    Lena Trappmann
    Basel Munawwar
    Jens Ricke
    Michael Ingrisch
    Bastian O. Sabel
    European Radiology, 2021, 31 : 7888 - 7900
  • [10] Pneumothorax Detection in Chest Radiographs Using Local and Global Texture Signatures
    Geva, Ofer
    Zimmerman-Moreno, Gali
    Lieberman, Sivan
    Konen, Eli
    Greenspan, Hayit
    MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414