Mutations of noncommutative crepant resolutions in geometric invariant theory

被引:0
|
作者
Hara, Wahei [1 ]
Hirano, Yuki [2 ]
机构
[1] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, 5-1-5 Kashiwanoha, Kashiwa 2778583, Japan
[2] Tokyo Univ Agr & Technol, 2-24-16 Nakacho, Koganei, Tokyo 1848588, Japan
来源
SELECTA MATHEMATICA-NEW SERIES | 2024年 / 30卷 / 04期
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Primary; 14F08; Secondary; 18G80; 16E35; FLOPS; CATEGORIES; EQUIVALENCES;
D O I
10.1007/s00029-024-00957-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a generic quasi-symmetric representation of a connected reductive group G. The GIT quotient stack X=[Xss(& ell;)/G]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {X}=[X<^>\text {ss}(\ell )/G]$$\end{document} with respect to a generic & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} is a (stacky) crepant resolution of the affine quotient X/G, and it is derived equivalent to a noncommutative crepant resolution (=NCCR) of X/G. Halpern-Leistner and Sam showed that the derived category Db(cohX)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textrm{D}}<^>{\textrm{b}}}({\text {coh}}\mathfrak {X})$$\end{document} is equivalent to certain subcategories of Db(coh[X/G])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textrm{D}}<^>{\textrm{b}}}({\text {coh}}[X/G])$$\end{document}, which are called magic windows. This paper studies equivalences between magic windows that correspond to wall-crossings in a hyperplane arrangement in terms of NCCRs. We show that those equivalences coincide with derived equivalences between NCCRs induced by tilting modules, and that those tilting modules are obtained by certain operations of modules, which is called exchanges of modules. When G is a torus, it turns out that the exchanges are nothing but iterated Iyama-Wemyss mutations. Although we mainly discuss resolutions of affine varieties, our theorems also yield a result for projective Calabi-Yau varieties. Using techniques from the theory of noncommutative matrix factorizations, we show that Iyama-Wemyss mutations induce a group action of the fundamental group pi 1(P1\{0,1,infinity})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _1(\mathbb {P}<^>1\,\backslash \{0,1,\infty \})$$\end{document} on the derived category of a Calabi-Yau complete intersection in a weighted projective space.
引用
收藏
页数:61
相关论文
共 50 条
  • [1] Generating toric noncommutative crepant resolutions
    Bocklandt, Raf
    JOURNAL OF ALGEBRA, 2012, 364 : 119 - 147
  • [2] Crepant Resolutions, Mutations, and the Space of Potentials
    Barker, Mary
    Standaert, Benjamin
    Wormleighton, Ben
    EXPERIMENTAL MATHEMATICS, 2025, 34 (01) : 13 - 26
  • [5] On the M2–Brane Index on Noncommutative Crepant Resolutions
    Michele Cirafici
    Letters in Mathematical Physics, 2022, 112
  • [6] FLOPS AND MUTATIONS FOR CREPANT RESOLUTIONS OF POLYHEDRAL SINGULARITIES
    Nolla de Celis, Alvaro
    Sekiya, Yuhi
    ASIAN JOURNAL OF MATHEMATICS, 2017, 21 (01) : 1 - 45
  • [7] REFINED OPEN NONCOMMUTATIVE DONALDSON-THOMAS INVARIANTS FOR SMALL CREPANT RESOLUTIONS
    Nagao, Kentaro
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 254 (01) : 173 - 209
  • [8] Existence of crepant resolutions
    Hayashi, Toshihiro
    Ito, Yukari
    Sekiya, Yuhi
    HIGHER DIMENSIONAL ALGEBRAIC GEOMETRY IN HONOUR OF PROFESSOR YUJIRO KAWAMATA'S SIXTIETH BIRTHDAY, 2017, 74 : 185 - 202
  • [9] Wonderful resolutions and categorical crepant resolutions of singularities
    Abuaf, Roland
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 708 : 115 - 141
  • [10] Crepant resolutions and open strings
    Brini, Andrea
    Cavalieri, Renzo
    Ross, Dustin
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 755 : 191 - 245