A Review of the Machine Learning Algorithms for Covid-19 Case Analysis

被引:22
|
作者
Tiwari S. [1 ]
Chanak P. [1 ]
Singh S.K. [1 ]
机构
[1] Indian Institute of Technology (BHU), Department of Computer Science and Engineering, Varanasi
来源
关键词
COVID-19; intelligent system; machine learning (ML); mathematical model; ML tasks;
D O I
10.1109/TAI.2022.3142241
中图分类号
学科分类号
摘要
The purpose of this article is to see how machine learning (ML) algorithms and applications are used in the COVID-19 inquiry and for other purposes. The available traditional methods for COVID-19 international epidemic prediction, researchers and authorities have given more attention to simple statistical and epidemiological methodologies. The inadequacy and absence of medical testing for diagnosing and identifying a solution is one of the key challenges in preventing the spread of COVID-19. A few statistical-based improvements are being strengthened to answer this challenge, resulting in a partial resolution up to a certain level. ML have advocated a wide range of intelligence-based approaches, frameworks, and equipment to cope with the issues of the medical industry. The application of inventive structure, such as ML and other in handling COVID-19 relevant outbreak difficulties, has been investigated in this article. The major goal of this article is to 1) Examining the impact of the data type and data nature, as well as obstacles in data processing for COVID-19. 2) Better grasp the importance of intelligent approaches like ML for the COVID-19 pandemic. 3) The development of improved ML algorithms and types of ML for COVID-19 prognosis. 4) Examining the effectiveness and influence of various strategies in COVID-19 pandemic. 5) To target on certain potential issues in COVID-19 diagnosis in order to motivate academics to innovate and expand their knowledge and research into additional COVID-19-affected industries. © 2020 IEEE.
引用
收藏
页码:44 / 59
页数:15
相关论文
共 50 条
  • [1] Analysis on Prediction of COVID-19 with Machine Learning Algorithms
    Sathyaraj, R.
    Kanthavel, R.
    Cavaliere, Luigi Pio Leonardo
    Vyas, Sumit
    Maheswari, S.
    Gupta, Ravi Kumar
    Raja, M. Ramkumar
    Dhaya, R.
    Gupta, Mukesh Kumar
    Sengan, Sudhakar
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2022, 30 (SUPP01) : 67 - 82
  • [2] An Analysis of Supervised Machine Learning Algorithms for COVID-19 Diagnosis
    Jain, Arpit
    Jat, Dharm Singh
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 4, 2023, 465 : 799 - 808
  • [3] Performance Estimation of Machine Learning Algorithms in the Factor Analysis of COVID-19 Dataset
    Dubey, Ashutosh Kumar
    Narang, Sushil
    Kumar, Abhishek
    Sasubilli, Satya Murthy
    Garcia-Diaz, Vicente
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (02): : 1921 - 1936
  • [4] A Comparative Study of Predictive Machine Learning Algorithms for COVID-19 Trends and Analysis
    Kunjir, Ajinkya
    Joshi, Dishant
    Chadha, Ritika
    Wadiwala, Tejas
    Trikha, Vikas
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3407 - 3412
  • [5] Survival Analysis of COVID-19 Patients With Symptoms Information by Machine Learning Algorithms
    Kim, Gwangsu
    Yoo, Chang D.
    Yang, Seong J.
    IEEE ACCESS, 2022, 10 : 62282 - 62291
  • [6] Machine learning algorithms to predict outcomes in children and adolescents with COVID-19: A systematic review
    dos Santos, Adriano Lages
    Pinhati, Clara
    Perdigao, Jonathan
    Galante, Stella
    Silva, Ludmilla
    Veloso, Isadora
    Silva, Ana Cristina Simoes
    Oliveira, Eduardo Araujo
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 150
  • [7] Sentiment Analysis on COVID-19 Vaccine Tweets using Machine Learning and Deep Learning Algorithms
    Jain, Tarun
    Verma, Vivek Kumar
    Sharma, Akhilesh Kumar
    Saini, Bhavna
    Purohit, Nishant
    Mahdin, Hairulnizam
    Ahmad, Masitah
    Darman, Rozanawati
    Haw, Su-Cheng
    Shaharudin, Shazlyn Milleana
    Arshad, Mohammad Syafwan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (05) : 32 - 41
  • [8] Machine learning algorithms for predicting COVID-19 mortality in Ethiopia
    Alie, Melsew Setegn
    Negesse, Yilkal
    Kindie, Kassa
    Merawi, Dereje Senay
    BMC PUBLIC HEALTH, 2024, 24 (01)
  • [9] Determination of COVID-19 Patients Using Machine Learning Algorithms
    Malik, Marium
    Iqbal, Muhammad Waseem
    Shahzad, Syed Khuram
    Mushtaq, Muhammad Tahir
    Naqvi, Muhammad Raza
    Kamran, Maira
    Khan, Babar Ayub
    Tahir, Muhammad Usman
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (01): : 207 - 222
  • [10] Comparing machine learning algorithms for predicting COVID-19 mortality
    Khadijeh Moulaei
    Mostafa Shanbehzadeh
    Zahra Mohammadi-Taghiabad
    Hadi Kazemi-Arpanahi
    BMC Medical Informatics and Decision Making, 22