Deligne Categories and Representations of the Finite General Linear Group, Part 1: Universal Property

被引:0
|
作者
Entova-Aizenbud, Inna [1 ]
Heidersdorf, Thorsten [2 ,3 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, Beer Sheva, Israel
[2] Univ Bonn, Math Inst, Bonn, Germany
[3] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne, England
基金
以色列科学基金会;
关键词
05E05; 18D10; 20C30;
D O I
10.1007/s00031-023-09840-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Deligne interpolation categories (Rep) under bar (GL(t) (F-q)) for t is an element of C, first introduced by F. Knop. These categories interpolate the categories of finite-dimensional complex representations of the finite general linear group GL(n)(F-q). We describe the morphism spaces in this category via generators and relations. We show that the generating object of this category (an analogue of the representation CFqn of GL(n)(F-q)) carries the structure of a Frobenius algebra with a compatible F-q-linear structure; we call such objects F-q-linear Frobenius spaces and show that (Rep) under bar (GL(t)(F-q)) is the universal symmetric monoidal category generated by such an F-q-linear Frobenius space of categorical dimension t. In the second part of the paper, we prove a similar universal property for a category of representations of GL(infinity)(F-q).
引用
收藏
页数:66
相关论文
共 50 条