Misiurewicz polynomials and dynamical units, part II

被引:0
|
作者
Benedetto, Robert L. [1 ]
Goksel, Vefa [2 ]
机构
[1] Amherst Coll, Amherst, MA 01002 USA
[2] Towson Univ, Towson, MD 21252 USA
基金
美国国家科学基金会;
关键词
37P15; 11R09; 37P20;
D O I
10.1007/s40993-024-00539-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix an integer d >= 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document} . The parameters c 0 is an element of Q <overline> \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0\in \overline{\mathbb {Q}}$$\end{document} for which the unicritical polynomial f d , c ( z ) = z d + c is an element of C [ z ] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{d,c}(z)=z<^>d+c\in \mathbb {C}[z]$$\end{document} has finite postcritical orbit, also known as Misiurewicz parameters, play a significant role in complex dynamics. Recent work of Buff, Epstein, and Koch proved the first known cases of a long-standing dynamical conjecture of Milnor using their arithmetic properties, about which relatively little is otherwise known. Continuing our work from a companion paper, we address further arithmetic properties of Misiurewicz parameters, especially the nature of the algebraic integers obtained by evaluating the polynomial defining one such parameter at a different Misiurewicz parameter. In the most challenging such combinations, we describe a connection between such algebraic integers and the multipliers of associated periodic points. As part of our considerations, we also introduce a new class of polynomials we call p-special, which may be of independent number theoretic interest.
引用
收藏
页数:24
相关论文
共 50 条