Mussel-mimetic thermal conductive films with solid-solid phase change and shape-adaptive performance

被引:5
|
作者
Li, Donglei [1 ]
Ding, Canxia [1 ]
Shen, Sicong [1 ]
Wang, Jun [1 ]
Wu, Limin [1 ]
You, Bo [1 ]
Tao, Guibao [2 ]
机构
[1] Fudan Univ, Minist Educ China, Adv Coatings Res Ctr, Dept Mat Sci, Shanghai 200433, Peoples R China
[2] Chongqing Univ, Coll Mech & Vehicle Engn, State Key Lab Mech Transmissions, Chongqing 400044, Peoples R China
关键词
ENERGY-CONVERSION; COMPOSITES; STORAGE; STRATEGIES;
D O I
10.1039/d4ta00031e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phase change thermal conductive materials have been applied as heat dissipation interface materials in new electronic devices owing to their high thermal conductivity, phase change energy storage performance, low energy consumption, renewability, and long service life. However, it is a huge challenge to achieve solid-solid phase change materials with high thermal conductivity, high latent heat of phase change, excellent shape stability, good shape adaptability, and high electrical insulation. Inspired by the "brick-mortar" structure and function of natural mussels, a solid-solid phase change thermal conductive film material was successfully constructed based on the self-assembly and self-crosslinking behavior of modified polyethylene glycol (CPEG) blended with oriented boron nitride (O-BN). The mussel-like O-BN/CPEG composite film (bio-composite film) was prepared using boron nitride micro-sheets as the "brick" and CPEG as the "mortar" through hot pressing and layer-by-layer stacking. The bio-composite film with a vertical arrangement of boron nitride micron sheets was obtained via longitudinal cutting, which had good shape stability and shape-adaptability, high out-of-plane thermal conductivity (12.05 W m(-1) K-1), low contact thermal resistance (<0.15 cm2 K W-1), high latent heat of phase transition (101 J g(-1)) and excellent electrical insulation (volume resistivity was greater than 1011 omega cm) when the BN load was only 20 vol%. The film could also be spliced together by heating, which was expected to yield a large-sized film with a vertical arrangement of BN. Compared with commercial thermal grease, the bio-composite thermal interface management films exhibited higher heat dissipation efficiency in cooling LED chips, and the bio-composite films had excellent heat management capability and stability in the heat dissipation of LED lamps with different powers. This method of constructing mussel-like thermally conductive films with oriented structures presents the potential for applications in the thermal management of chips, electronic devices, flexible wearable devices, new energy battery systems, and other new electronic devices.
引用
收藏
页码:11511 / 11523
页数:13
相关论文
共 50 条
  • [1] Shape-Adaptive, Self-Healable Triboelectric Nanogenerator with Enhanced Performances by Soft Solid-Solid Contact Electrification
    Chen, Yanghui
    Pu, Xiong
    Liu, Mengmeng
    Kuang, Shuangyang
    Zhan, Panpan
    Hua, Qilin
    Cong, Zifeng
    Guo, Wenbin
    Hu, Weiguo
    Wang, Zhong Lin
    ACS NANO, 2019, 13 (08) : 8936 - 8945
  • [2] Research on the Thermal Storage Performance of Solid-Solid Phase-Change Material Used in the Wall
    Yan Quanying
    Jin Lili
    RENEWABLE AND SUSTAINABLE ENERGY, PTS 1-7, 2012, 347-353 : 2801 - 2804
  • [3] Fabrication and Performance Optimization Technology of Materials for Solid-Solid Phase Change Thermal Energy Storage (Ⅰ)
    Li T.
    Li B.
    Liu W.
    Zhao P.
    Du X.
    Cailiao Daobao/Materials Reports, 2022, 36 (05):
  • [4] Polyurethanes as solid-solid phase change materials for thermal energy storage
    Alkan, Cemil
    Guenther, Eva
    Hiebler, Stefan
    Ensari, Omer F.
    Kahraman, Derya
    SOLAR ENERGY, 2012, 86 (06) : 1761 - 1769
  • [5] Super-elastic and shape-stable solid-solid phase change materials for thermal management of electronics
    Liao, Yanning
    Li, Jing
    Li, Shaowei
    Yang, Xu
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [6] Thermal Conductivity Enhancement of Solid-Solid Phase-Change Materials for Thermal Storage
    Son, C. H.
    Morehouse, J. H.
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1991, 5 (01) : 122 - 124
  • [7] Flexible solid-solid phase change materials with high stability for thermal management
    Wu, Tingting
    Wang, Changhong
    Hu, Yanxin
    Zeng, Xiaoxing
    Song, Mengjie
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 211
  • [8] Research progress of solid-solid phase change materials for thermal energy storage
    Zhou S.
    Zhang Z.
    Fang X.
    Fang, Xiaoming (cexmfang@scut.edu.cn), 1600, Materials China (40): : 1371 - 1383
  • [9] A facile synthesis of solid-solid phase change material for thermal energy storage
    Kong, Weibo
    Fu, Xiaowei
    Liu, Zhimeng
    Zhou, Changlin
    Lei, Jingxin
    APPLIED THERMAL ENGINEERING, 2017, 117 : 622 - 628
  • [10] A polyurethane solid-solid phase change material for flexible use in thermal management
    Zhu, Guangyu
    Zou, Minming
    Luo, Wenxing
    Huang, Yifan
    Chen, Wenjing
    Hu, Xiaowu
    Jiang, Xiongxin
    Li, Qinglin
    CHEMICAL ENGINEERING JOURNAL, 2024, 488