On the Spectrum of Quasi-periodic Schrödinger Operators on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^d$$\end{document} with C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}-Cosine Type Potentials

被引:0
|
作者
Hongyi Cao [1 ]
Yunfeng Shi [2 ]
Zhifei Zhang [1 ]
机构
[1] Peking University,School of Mathematical Sciences
[2] Sichuan University,School of Mathematics
关键词
D O I
10.1007/s00220-024-05073-9
中图分类号
学科分类号
摘要
In this paper, we establish the Anderson localization, strong dynamical localization and the (12-)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{1}{2}-)$$\end{document}-Hölder continuity of the integrated density of states (IDS) for some multi-dimensional discrete quasi-periodic (QP) Schrödinger operators with asymmetric C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}-cosine type potentials. We extend both the iteration scheme of Cao-Shi-Zhang (Commun Math Phys 404(1):495–561, 2023) and the interlacing method of Forman and VandenBoom (Localization and Cantor spectrum for quasiperiodic discrete Schrödinger operators with asymmetric, smooth, cosine-like sampling functions. arXiv:2107.05461, 2021) to handle asymmetric Rellich functions with collapsed gaps.
引用
收藏
相关论文
共 50 条