Why and how to construct an epistemic justification of machine learning?

被引:1
|
作者
Spelda, Petr [1 ]
Stritecky, Vit [1 ]
机构
[1] Charles Univ Prague, Inst Polit Studies, Fac Social Sci, Dept Secur Studies, U Krize 8, Prague 5, Czech Republic
关键词
Lottery ticket hypothesis; Complexity regularization; Material theory of induction; Empirical risk minimization; NETWORKS; THEOREM; BOUNDS;
D O I
10.1007/s11229-024-04702-z
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
Consider a set of shuffled observations drawn from a fixed probability distribution over some instance domain. What enables learning of inductive generalizations which proceed from such a set of observations? The scenario is worthwhile because it epistemically characterizes most of machine learning. This kind of learning from observations is also inverse and ill-posed. What reduces the non-uniqueness of its result and, thus, its problematic epistemic justification, which stems from a one-to-many relation between the observations and many learnable generalizations? The paper argues that this role belongs to any complexity regularization which satisfies Norton's Material Theory of Induction (MTI) by localizing the inductive risk to facts in the given domain. A prime example of the localization is the Lottery Ticket Hypothesis (LTH) about overparameterized neural networks. The explanation of MTI's role in complexity regularization of neural networks is provided by analyzing the stability of Empirical Risk Minimization (ERM), an inductive rule that controls the learning process and leads to an inductive generalization on the given set of observations. In cases where ERM might become asymptotically unstable, making the justification of the generalization by uniform convergence unavailable, LTH and MTI can be used to define a local stability. A priori, overparameterized neural networks are such cases and the combination of LTH and MTI can block ERM's trivialization caused by equalizing the strengths of its inductive support for risk minimization. We bring closer the investigation of generalization in artificial neural networks and the study of inductive inference and show the division of labor between MTI and the optimality justifications (developed by Gerhard Schurz) in machine learning.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Why Reliabilism Is Not Enough: Epistemic and Moral Justification in Machine Learning
    Smart, Andrew
    James, Larry
    Hutchinson, Ben
    Wu, Simone
    Vallor, Shannon
    PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, 2020, : 372 - 377
  • [2] Why deliberate? From epistemic potential to public justification
    Daoust, Marc-Kevin
    PHILOSOPHIQUES, 2016, 43 (01): : 23 - 48
  • [3] How to be a neoclassical foundationalist about epistemic justification
    Etcheverry, Katia M.
    REVISTA DE FILOSOFIA AURORA, 2014, 26 (39): : 581 - 607
  • [4] Epistemic disaster averted (Coherentist justification, epistemic justification)
    Hetherington, S
    ANALYSIS, 1999, 59 (03) : 194 - 200
  • [5] Epistemic justification and epistemic luck
    Job de Grefte
    Synthese, 2018, 195 : 3821 - 3836
  • [6] EPISTEMIC JUSTIFICATION
    PLANTINGA, A
    NOUS, 1986, 20 (01): : 3 - 18
  • [7] EPISTEMIC JUSTIFICATION
    NAYLOR, MB
    AMERICAN PHILOSOPHICAL QUARTERLY, 1988, 25 (01) : 49 - 58
  • [8] Epistemic justification and epistemic luck
    de Grefte, Job
    SYNTHESE, 2018, 195 (09) : 3821 - 3836
  • [9] EPISTEMIC JUSTIFICATION
    AUNE, B
    PHILOSOPHICAL STUDIES, 1981, 40 (03) : 419 - 429
  • [10] Epistemic justification
    Engel, P
    REVUE PHILOSOPHIQUE DE LA FRANCE ET DE L ETRANGER, 2004, 129 (02): : 251 - 252