Empirical likelihood MLE for joint modeling right censored survival data with longitudinal covariates

被引:0
|
作者
Ren, Jian-Jian [1 ]
Shi, Yuyin [2 ]
机构
[1] Univ Maryland, Dept Math, Stat Program, College Pk, MD 20742 USA
[2] US FDA, Ctr Biol Evaluat & Res CBER, 10903 New Hampshire Ave, Silver Spring, MD 20993 USA
基金
美国国家科学基金会;
关键词
Empirical likelihood; Intensive longitudinal data; Maximum likelihood estimator; Proportional hazards model; Right censored data; RATIO CONFIDENCE-INTERVALS; SELF-CONSISTENT; REGRESSION; ESTIMATORS; INFERENCE;
D O I
10.1007/s10463-024-00899-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Up to now, almost all existing methods for joint modeling survival data and longitudinal data rely on parametric/semiparametric assumptions on longitudinal covariate process, and the resulting inferences critically depend on the validity of these assumptions that are difficult to verify in practice. The kernel method-based procedures rely on choices of kernel function and bandwidth, and none of the existing methods provides estimate for the baseline distribution in proportional hazards model. This article proposes a proportional hazards model for joint modeling right censored survival data and intensive longitudinal data taking into account of within-subject historic change patterns. Without any parametric/semiparametric assumptions or use of kernel method, we derive empirical likelihood-based maximum likelihood estimators and partial likelihood estimators for the regression parameter and the baseline distribution function. We develop stable computing algorithms and present some simulation results. Analyses of real dataset are conducted for smoking cessation data and liver disease data.
引用
收藏
页码:617 / 648
页数:32
相关论文
共 50 条
  • [1] MODELING LEFT-TRUNCATED AND RIGHT-CENSORED SURVIVAL DATA WITH LONGITUDINAL COVARIATES
    Su, Yu-Ru
    Wang, Jane-Ling
    ANNALS OF STATISTICS, 2012, 40 (03): : 1465 - 1488
  • [2] Joint modeling of longitudinal and survival data with missing and left-censored time-varying covariates
    Chen, Qingxia
    May, Ryan C.
    Ibrahim, Joseph G.
    Chu, Haitao
    Cole, Stephen R.
    STATISTICS IN MEDICINE, 2014, 33 (26) : 4560 - 4576
  • [3] Empirical likelihood for right censored data with covariables
    ShuYuan He
    Wei Liang
    Science China Mathematics, 2014, 57 : 1275 - 1286
  • [4] Empirical Likelihood for Right Censored Lifetime Data
    He, Shuyuan
    Liang, Wei
    Shen, Junshan
    Yang, Grace
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) : 646 - 655
  • [5] Empirical likelihood for right censored data with covariables
    He ShuYuan
    Liang Wei
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (06) : 1275 - 1286
  • [6] Empirical likelihood for right censored data with covariables
    HE ShuYuan
    LIANG Wei
    ScienceChina(Mathematics), 2014, 57 (06) : 1275 - 1286
  • [7] Joint modeling of quantitative longitudinal data and censored survival time
    Jacqmin-Gadda, H
    Thiébaut, R
    Dartigues, JF
    REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 2004, 52 (06): : 502 - 510
  • [8] Adjusted empirical likelihood for right censored lifetime data
    Zheng, Jiayin
    Shen, Junshan
    He, Shuyuan
    STATISTICAL PAPERS, 2014, 55 (03) : 827 - 839
  • [9] Empirical likelihood based on synthetic right censored data
    Liang, Wei
    Dai, Hongsheng
    STATISTICS & PROBABILITY LETTERS, 2021, 169
  • [10] Adjusted empirical likelihood for right censored lifetime data
    Jiayin Zheng
    Junshan Shen
    Shuyuan He
    Statistical Papers, 2014, 55 : 827 - 839