FuzConvSteganalysis: Steganalysis via fuzzy logic and convolutional neural network

被引:2
|
作者
De La Croix, Ntivuguruzwa Jean [1 ,2 ]
Ahmad, Tohari [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Informat, Surabaya 60111, Indonesia
[2] Univ Rwanda, Coll Sci & Technol, African Ctr Excellence Internet Things, Kigali 3900, Rwanda
关键词
Information security; Steganalysis; Fuzzy logic; CNN; Spatial domain images; Information and communication technology; IMAGES;
D O I
10.1016/j.softx.2024.101713
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Emerging technologies based on the advancements in Deep Learning (DL) induced several alternative approaches to address intricate problems, such as analyzing images in the spatial to identify the location of the hidden content utilizing Convolutional Neural Networks (CNNs) as a backbone. Contemporarily, several CNN architectures have surfaced, elevating the accuracy of locating the concealed data in images. However, existing CNNs face challenges attributed to the heightened imperceptibility of the location of the secret data hidden with low payload capacities and less than optimal feature learning procedures. In this work, a steganalysis scheme named FuzConvSteganalysis proposes an innovative software tool that combines fuzzy logic and CNNs to locate the pixels holding the hidden information in the spatial domain images. FuzConvSteganalysis comprises three primary stages: the derivation of modification maps delineating alterations between the original image and the image containing concealed data, generating the correlation maps, and predicting the possible positions of hidden data. The maps resulting from the modification of the image serve as fuzzy inference system input and are subsequently fed into a CNN for classification. Through experimentation, FuzConvSteganalysis is assessed against four distinct adaptive data hiding approaches: WOW, HILL, S-UNIWARD, and HUGO-BD. Upon initial examination, the sensitivity for all four approaches exhibits a comparable upward trend, progressively enhancing with augmented payload capacity. The locating accuracy for the steganographically modified pixels attains a peak of 92.89% with WOW at a concealment rate of 0.5. This substantiates the superior efficacy of the FuzConvSteganalysis compared to the state-of-the-art algorithms.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Toward secret data location via fuzzy logic and convolutional neural network
    Croix, Ntivuguruzwa Jean De La
    Ahmad, Tohari
    EGYPTIAN INFORMATICS JOURNAL, 2023, 24 (03)
  • [2] Audio Steganalysis With Convolutional Neural Network
    Chen, Bolin
    Luo, Weiqi
    Li, Haodong
    IH&MMSEC'17: PROCEEDINGS OF THE 2017 ACM WORKSHOP ON INFORMATION HIDING AND MULTIMEDIA SECURITY, 2017, : 85 - 90
  • [3] Image Steganalysis via Multi-Column Convolutional Neural Network
    Qi Ke
    Liu DongMing
    Zhang Daxing
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 550 - 553
  • [4] Dual Convolutional Neural Network for Image Steganalysis
    Kim, Jaeyoung
    Kang, Sanghoon
    Park, Hanhoon
    Park, Jong-Il
    2019 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2019,
  • [5] Audio Steganalysis with Improved Convolutional Neural Network
    Lin, Yuzhen
    Wang, Rangding
    Yan, Diqun
    Dong, Li
    Zhang, Xueyuan
    IH&MMSEC '19: PROCEEDINGS OF THE ACM WORKSHOP ON INFORMATION HIDING AND MULTIMEDIA SECURITY, 2019, : 210 - 215
  • [6] Convolutional Neural Network Based Text Steganalysis
    Wen, Juan
    Zhou, Xuejing
    Zhong, Ping
    Xue, Yiming
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (03) : 460 - 464
  • [7] Smile Detection using Convolutional Neural Network and Fuzzy Logic
    Kh-Madhloom, Jamal
    Diwan, Sinan Adnan
    Abdulhussein, Zainab Ali
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2020, 36 (02) : 269 - 278
  • [8] Steganalysis of convolutional neural network based on neural architecture search
    Wang, Hongbo
    Pan, Xingyu
    Fan, Lingyan
    Zhao, Shuofeng
    MULTIMEDIA SYSTEMS, 2021, 27 (03) : 379 - 387
  • [9] Steganalysis of convolutional neural network based on neural architecture search
    Hongbo Wang
    Xingyu Pan
    Lingyan Fan
    Shuofeng Zhao
    Multimedia Systems, 2021, 27 : 379 - 387
  • [10] Convolutional Neural Network for Larger JPEG Images Steganalysis
    Zhang, Qian
    Zhao, Xianfeng
    Liu, Changjun
    DIGITAL FORENSICS AND WATERMARKING, IWDW 2018, 2019, 11378 : 14 - 28