Numerical Simulation for the Initial-boundary Value Problem of the Klein-Gordon-Zakharov Equations

被引:0
|
作者
Juan Chen Luming Zhang Department of MathematicsChangshu Institute of TechnologyChangshu China Department of MathematicsNanjing university of Aeronautics and AstronauticsNanjing China [1 ,2 ,1 ,215500 ,2 ,210016 ]
机构
关键词
D O I
暂无
中图分类号
O175.8 [边值问题];
学科分类号
摘要
In this paper,a new conservative finite difference scheme with a parameter θ is proposed for the initial-boundary problem of the Klein-Gordon-Zakharov (KGZ) equations.Convergence of the numerical solutions are proved with order O(h 2 + τ 2) in the energy norm.Numerical results show that the scheme is accurate and efficient.
引用
收藏
页码:325 / 336
页数:12
相关论文
共 50 条
  • [1] Numerical simulation for the initial-boundary value problem of the Klein-Gordon-Zakharov equations
    Juan Chen
    Lu-ming Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2012, 28 : 325 - 336
  • [3] Numerical Simulation for the Initial-boundary Value Problem of the Klein-Gordon-Zakharov Equations
    Chen, Juan
    Zhang, Lu-ming
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (02): : 325 - 336
  • [4] Numerical simulation for an initial-boundary value problem of time-fractional Klein-Gordon equations
    Odibat, Zaid
    APPLIED NUMERICAL MATHEMATICS, 2024, 206 : 1 - 11
  • [5] On the Exact Solutions of the Klein-Gordon-Zakharov Equations
    Mhlanga, Isaiah Elvis
    Khalique, Chaudry Masood
    INTERDISCIPLINARY TOPICS IN APPLIED MATHEMATICS, MODELING AND COMPUTATIONAL SCIENCE, 2015, 117 : 301 - 307
  • [6] Two Energy Conserving Numerical Schemes for the Klein-Gordon-Zakharov Equations
    Chen, Juan
    Zhang, Luming
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [7] An initial-boundary value problem of a nonlinear Klein-Gordon equation
    Wong, YS
    Chang, QS
    Gong, LG
    APPLIED MATHEMATICS AND COMPUTATION, 1997, 84 (01) : 77 - 93
  • [8] The Global Existence and Uniqueness of the Classical Solution with the Periodic Initial Value Problem for One-Dimension Klein-Gordon-Zakharov Equations
    Sun, Cong
    Li, Lixia
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [9] Energy stable schemes for the Klein-Gordon-Zakharov equations
    Guo, Jiaojiao
    Zhuang, Qingqu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 147 : 150 - 163
  • [10] New solitary waves for the Klein-Gordon-Zakharov equations
    Nestor, Savaissou
    Houwe, Alphonse
    Rezazadeh, Hadi
    Bekir, Ahmet
    Betchewe, Gambo
    Doka, Serge Y.
    MODERN PHYSICS LETTERS B, 2020, 34 (23):