AW-Rascle模型的Riemann解的压力消失极限

被引:1
|
作者
尹淦
机构
[1] 新疆大学数学与系统科学学院
关键词
Chaplygin气体; Riemann问题; Delta激波; 真空; 压力消失极限;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
研究了一维Chaplygin气体AW-Rascle模型的Riemann解.利用压力消失的方法,得到了两种情况下Riemann解的极限.首先,当压力消失时,包含两个激波的Riemann解趋向于输运方程组的delta激波解.通过对极限过程中delta激波的强度和传播速度的仔细讨论,发现其与多方气体情形有明显的不同.其次,当压力趋于零时,包含两个疏散波的Riemann解趋向于输运方程组的真空解.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 10 条
  • [1] Delta Shocks and Vacuum States in Vanishing Pressure Limits of Solutions to the Relativistic Euler Equations.[J]..Chinese Annals of Mathematics.2008, 06
  • [2] Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw–Rascle model.[J].Chun Shen;Meina Sun.Journal of Differential Equations.2010, 12
  • [3] Shadow Waves: Entropies and Interactions for Delta and Singular Shocks.[J].Marko Nedeljkov.Archive for Rational Mechanics and Analysis.2010, 2
  • [4] Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for polytropic gases
    Yin, Gan
    Sheng, Wancheng
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (02) : 594 - 605
  • [5] INTERACTIONS OF ELEMENTARY WAVES FOR THE AW–RASCLE MODEL.[J].MEINA SUN.SIAM Journal on Applied Mathematics.2009, 6
  • [6] <IMG SRC="http://ej.iop.org/images/0036-0279/63/3/R02/tex_rm_4534_img1.gif" ALIGN="ABSMIDDLE" ALT="$ \delta$"/>- and <IMG SRC="http://ej.iop.org/images/0036-0279/63/3/R02/tex_rm_4534_img2.gif" ALIGN="ABSMIDDLE" ALT="$ \delta'$"/>-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes.[J].V M Shelkovich.Russian Mathematical Surveys.2008, 3
  • [7] Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids.[J].Gui-Qiang Chen;Hailiang Liu.Physica D: Nonlinear Phenomena.2003, 1
  • [8] Congestion on multilane highways
    Greenberg, JM
    Klar, A
    Rascle, M
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (03) : 818 - 833
  • [9] Note on the compressible euler equations with zero temperature.[J].Jiequan Li.Applied Mathematics Letters.2001, 4
  • [10] Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics
    Weinan, E
    Rykov, YG
    Sinai, YG
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (02) : 349 - 380