Textual-geographical-social aware point-of-interest recommendation

被引:0
|
作者
Ren Xingyi
Song Meina
E Haihong
Song Junde
机构
[1] School of Telecommunication Engineering,Beijing University of Posts and Telecommunications
[2] Engineering Research Center of Information Networks,Beijing University of Posts and
关键词
D O I
暂无
中图分类号
TP391.3 [检索机];
学科分类号
摘要
The rapid development of location-based social networks(LBSNs) has provided an unprecedented opportunity for better location-based services through point-of-interest(POI) recommendation. POI recommendation is personalized, location-aware, and context depended. However, extreme sparsity of user-POI matrix creates a severe challenge. In this paper we propose a textual-geographical-social aware probabilistic matrix factorization method for POI recommendation. Our model is textual-geographical-social aware probabilistic matrix factorization called TGS-PMF, it exploits textual information, geographical information, social information, and incorporates these factors effectively. First, we exploit an aggregated latent Dirichlet allocation(LDA) model to learn the interest topics of users and infer the interest POIs by mining textual information associated with POIs and generate interest relevance score. Second, we propose a kernel estimation method with an adaptive bandwidth to model the geographical correlations and generate geographical relevance score. Third, we build social relevance through the power-law distribution of user social relations to generate social relevance score. Then, our exploit probabilistic matrix factorization model(PMF) to integrate the interest, geographical, social relevance scores for POI recommendation. Finally, we implement experiments on a real LBSN check-in dataset. Experimental results show that TGS-PMF achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.
引用
收藏
页码:24 / 33+67 +67
页数:11
相关论文
共 50 条
  • [1] Textual-geographical-social aware point-of-interest recommendation
    Ren Xingyi
    Song Meina
    E Haihong
    Song Junde
    The Journal of China Universities of Posts and Telecommunications, 2016, (06) : 24 - 33
  • [2] Personalized Point-of-Interest Recommendation Based on Social and Geographical Influence
    Su, Chang
    Gong, Bin
    Xie, Xianzhong
    AICCC 2021: 2021 4TH ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE, 2021, : 130 - 137
  • [3] Disentangling Geographical Effect for Point-of-Interest Recommendation
    Qin, Yingrong
    Gao, Chen
    Wang, Yue
    Wei, Shuangqing
    Jin, Depeng
    Yuan, Jian
    Zhang, Lin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 7883 - 7897
  • [4] Learning Geographical Preferences for Point-of-Interest Recommendation
    Liu, Bin
    Fu, Yanjie
    Yao, Zijun
    Xiong, Hui
    19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 1043 - 1051
  • [5] Time-aware Point-of-interest Recommendation
    Yuan, Quan
    Cong, Gao
    Ma, Zongyang
    Sun, Aixin
    Magnenat-Thalmann, Nadia
    SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, 2013, : 363 - 372
  • [6] Combining Geographical and Social Influences with Deep Learning for Personalized Point-of-Interest Recommendation
    Guo, Junpeng
    Zhang, Wenxiang
    Fan, Weiguo
    Li, Wenhua
    JOURNAL OF MANAGEMENT INFORMATION SYSTEMS, 2018, 35 (04) : 1121 - 1153
  • [7] Privacy-preserving point-of-interest recommendation based on geographical and social influence
    Huo, Yongfeng
    Chen, Bilian
    Tang, Jing
    Zeng, Yifeng
    INFORMATION SCIENCES, 2021, 543 : 202 - 218
  • [8] A Geographical Behavior-based Point-of-Interest Recommendation
    Yu, Xiaoyun
    Li, Xin
    Li, Jidong
    Gai, Keke
    2019 IEEE 5TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY) / IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING (HPSC) / IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2019, : 166 - 171
  • [9] Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation
    Ye, Mao
    Yin, Peifeng
    Lee, Wang-Chien
    Lee, Dik-Lun
    PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), 2011, : 325 - 334
  • [10] PGRank: Personalized Geographical Ranking for Point-of-Interest Recommendation
    Ying, Haochao
    Chen, Liang
    Xiong, Yuwen
    Wu, Jian
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), 2016, : 137 - 138