Regularization Semismooth Newton Method for P-NCPs with Non-monotone Line Search

被引:0
|
作者
王萍 [1 ]
臧玉卫 [2 ]
张颖 [1 ]
机构
[1] 不详
[2] School of Sciences,Tianjin University
[3] 不详
[4] Tianjin University Beiyang Science and Technology Development Co Ltd
[5] 不详
关键词
D O I
暂无
中图分类号
O224 [最优化的数学理论];
学科分类号
摘要
Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a P0-function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-monotone line search. It is shown that the non-monotone algorithm is well-defined, and is globally and locally superlinearly convergent under standard assumptions.
引用
收藏
页码:138 / 141
页数:4
相关论文
共 50 条
  • [1] A Regularization Semismooth Newton Method for P0-NCPs with a Non-monotone Line Search
    Lu, Li-Yong
    Gu, Wei-Zhe
    Wang, Wei
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2012, 5 (02) : 186 - 204
  • [2] Regularization semismooth Newton method for P0-NCPs with non-monotone line search
    Wang P.
    Zang Y.
    Zhang Y.
    Transactions of Tianjin University, 2010, 16 (02) : 138 - 141
  • [3] Regularization Semismooth Newton Method for P0-NCPs with Non-monotone Line Search
    王萍
    臧玉卫
    张颖
    Transactions of Tianjin University, 2010, 16 (02) : 138 - 141
  • [4] A subgradient method with non-monotone line search
    O. P. Ferreira
    G. N. Grapiglia
    E. M. Santos
    J. C. O. Souza
    Computational Optimization and Applications, 2023, 84 : 397 - 420
  • [5] A subgradient method with non-monotone line search
    Ferreira, O. P.
    Grapiglia, G. N.
    Santos, E. M.
    Souza, J. C. O.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 84 (02) : 397 - 420
  • [6] A regularization semismooth Newton method based on the generalized Fischer-Burmeister function for P0-NCPs
    Chen, Jein-Shan
    Pan, Shaohua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 464 - 479
  • [7] The global convergence of the non-quasi-Newton methods with non-monotone line search
    焦宝聪
    刘洪伟
    Journal of Harbin Institute of Technology, 2006, (06) : 758 - 762
  • [8] The global convergence of the non-quasi-Newton methods with non-monotone line search
    Jiao, Bao-Cong
    Liu, Hong-Wei
    Journal of Harbin Institute of Technology (New Series), 2006, 13 (06) : 758 - 762
  • [9] Global Convergence of the Non-Quasi-Newton Method with Non-Monotone Line Search for Unconstrained Optimization Problem
    Liu, Hong-Wei
    OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 270 - 279
  • [10] A non-monotone regularization Newton method for the second-order cone complementarity problem
    Tang, Jingyong
    Zhou, Jinchuan
    Fang, Liang
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 743 - 756