Drive-reinforcement learning: a self-supervised model for adaptive control

被引:4
|
作者
Morgan, James S. [1 ]
Patterson, Elizabeth C. [1 ]
Klopf, A. Harry [1 ]
机构
[1] Wright Res & Dev Ctr, Wright Patterson AFB, OH 45433 USA
关键词
D O I
10.1088/0954-898X/1/4/004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A network of two self-supervised simulated neurons using the drive-reinforcement rule for synaptic modification can learn to balance a pole without experiencing failure. This adaptive controller also responds quickly and automatically to rapidly changing plant parameters. Other aspects of the controller's performance investigated include the controller's response in a noisy environment, the effect of varying the partitioning of the state space of the plant, the effect of increasing the controller's response time, and the consequences of disabling learning at the beginning of a trial and during the progress of a trial. Earlier work with drive-reinforcement learning supports the claim that the theory's neuronal model can account for observed phenomena of classical conditioning; this work constitutes progress toward demonstrating that useful adaptive controllers can be fabricated from networks of classically conditionable elements.
引用
收藏
页码:439 / 448
页数:10
相关论文
共 50 条
  • [1] Intrinsically Motivated Self-supervised Learning in Reinforcement Learning
    Zhao, Yue
    Du, Chenzhuang
    Zhao, Hang
    Li, Tiejun
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 3605 - 3615
  • [2] Self-Supervised Reinforcement Learning for Recommender Systems
    Xin, Xin
    Karatzoglou, Alexandros
    Arapakis, Ioannis
    Jose, Joemon M.
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 931 - 940
  • [3] Self-supervised learning model
    Saga, Kazushie
    Sugasaka, Tamami
    Sekiguchi, Minoru
    Fujitsu Scientific and Technical Journal, 1993, 29 (03): : 209 - 216
  • [4] Self-Adaptive Training: Bridging Supervised and Self-Supervised Learning
    Huang, Lang
    Zhang, Chao
    Zhang, Hongyang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1362 - 1377
  • [5] Adaptive Self-Supervised Graph Representation Learning
    Gong, Yunchi
    36TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2022), 2022, : 254 - 259
  • [6] Self-supervised Adaptive Aggregator Learning on Graph
    Lin, Bei
    Luo, Binli
    He, Jiaojiao
    Gui, Ning
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT III, 2021, 12714 : 29 - 41
  • [7] Adaptive self-supervised learning for sequential recommendation
    Sun, Xiujuan
    Sun, Fuzhen
    Zhang, Zhiwei
    Li, Pengcheng
    Wang, Shaoqing
    NEURAL NETWORKS, 2024, 179
  • [8] Reinforcement Learning with Attention that Works: A Self-Supervised Approach
    Manchin, Anthony
    Abbasnejad, Ehsan
    van den Hengel, Anton
    NEURAL INFORMATION PROCESSING, ICONIP 2019, PT V, 2019, 1143 : 223 - 230
  • [9] Self-Supervised Reinforcement Learning for Active Object Detection
    Fang, Fen
    Liang, Wenyu
    Wu, Yan
    Xu, Qianli
    Lim, Joo-Hwee
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04): : 10224 - 10231
  • [10] Self-Supervised Discovering of Interpretable Features for Reinforcement Learning
    Shi, Wenjie
    Huang, Gao
    Song, Shiji
    Wang, Zhuoyuan
    Lin, Tingyu
    Wu, Cheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (05) : 2712 - 2724