ONE-DIMENSIONAL ELECTROMAGNETIC INDUCTION PROBLEM - MODEL REFINEMENT

被引:2
|
作者
ANDERSSEN, RS
机构
关键词
D O I
10.1111/j.1365-246X.1979.tb03772.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
引用
收藏
页码:67 / 77
页数:11
相关论文
共 50 条
  • [1] FRECHET DERIVATIVE FOR ONE-DIMENSIONAL ELECTROMAGNETIC INDUCTION PROBLEM
    PARKER, RL
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1977, 49 (02): : 543 - 547
  • [2] ON THE FRECHET DIFFERENTIABILITY OF THE ONE-DIMENSIONAL ELECTROMAGNETIC INDUCTION PROBLEM
    MACBAIN, J
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1987, 88 (03): : 777 - 785
  • [3] ADAPTIVE REFINEMENT OF ONE-DIMENSIONAL VISCOELASTIC PROBLEM
    RAO, RR
    FINLAYSON, BA
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1992, 8 (01): : 41 - 49
  • [4] One-dimensional problem of piezoelectric electromagnetic diffusion for a layer
    Zverev, N. A.
    Zemskov, A. V.
    Tarlakovskii, D. V.
    CONFERENCE OF YOUNG SCIENTISTS IN MECHANICS, 2018, 1129
  • [5] A HYPERBOLIC MODEL FOR THE ONE-DIMENSIONAL ELECTROMAGNETIC PULSE
    BAMPI, F
    ZORDAN, C
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (06): : 1233 - 1237
  • [6] One-dimensional dynamic model of induction crucible furnace
    Fatkullin S.M.
    Frizen V.E.
    Sarapulov F.N.
    Idiyatulin A.A.
    Russian Electrical Engineering, 2010, 81 (05) : 254 - 258
  • [7] A MODEL PROBLEM IN ONE-DIMENSIONAL VISCOELASTICITY WITH A SINGULAR KERNEL
    HRUSA, WJ
    RENARDY, M
    VOLTERRA INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACES AND APPLICATIONS, 1989, 190 : 221 - 230
  • [8] AUTOMATIC MODEL FOR FINDING THE ONE-DIMENSIONAL MAGNETOTELLURIC PROBLEM
    HOBBS, BA
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1982, 68 (01): : 253 - 264
  • [9] A kinetic model for the one-dimensional electromagnetic solitons in an isothermal plasma
    Lontano, M
    Bulanov, SV
    Koga, J
    Passoni, M
    Tajima, T
    PHYSICS OF PLASMAS, 2002, 9 (06) : 2562 - 2568
  • [10] ONE-DIMENSIONAL OUTGASSING PROBLEM
    CONG, TT
    BIRD, GA
    PHYSICS OF FLUIDS, 1978, 21 (03) : 327 - 333