VARIATIONAL STABILITY OF INFINITE DIMENSIONAL OPTIMAL-CONTROL PROBLEMS

被引:1
|
作者
AVGERINOS, EP [1 ]
PAPAGEORGIOU, NS [1 ]
机构
[1] UNIV CALIF DAVIS,DEPT MATH 1015,DAVIS,CA 95616
关键词
Control Systems; Distributed Parameter - Mathematical Techniques--Nonlinear Equations - System Stability;
D O I
10.1080/00207729008910470
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We examine the variational stability of infinite dimensional optimal control problems governed by non-linear evolution equations. Our tools are the Kuratowski-Mosco convergence of sets and the corresponding τ-convergence of functions. We prove the τ–convergence of cost functionals, the convergence of the values of the problems and we examine the variational stability of the solution and reachable sets. These results are then applied to a sequence of non-linear parabolic distributed parameter optimal control problems. © 1990 Taylor & Francis Group, LLC.
引用
收藏
页码:1473 / 1488
页数:16
相关论文
共 50 条