SOME REMARKS ON REPRODUCING KERNEL KREIN SPACES

被引:32
|
作者
ALPAY, D [1 ]
机构
[1] BEN GURION UNIV NEGEV,DEPT MATH,IL-84105 BEER SHEVA,ISRAEL
关键词
D O I
10.1216/rmjm/1181072903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The one-to-one correspondence between positive functions and reproducing kernel Hilbert spaces was extended by L. Schwartz to a (onto, but not one-to-one) correspondence between difference of positive functions and reproducing kernel Krein spaces. After discussing this result, we prove that a matrix valued function K(z, w) symmetric and jointly analytic in z and wBAR in a neighborhood of the origin is the reproducing kernel of a reproducing kernel Krein space. We conclude with an example showing that such a function can be the reproducing kernel of two different Krein spaces.
引用
收藏
页码:1189 / 1205
页数:17
相关论文
共 50 条
  • [1] Learning in Reproducing Kernel Krein Spaces
    Oglic, Dino
    Gaertner, Thomas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [2] Scalable Learning in Reproducing Kernel Krein Spaces
    Oglic, Dino
    Gartner, Thomas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [3] SOME REMARKS ABOUT INTERPOLATING SEQUENCES IN REPRODUCING KERNEL HILBERT SPACES
    Raghupathi, Mrinal
    Wick, Brett D.
    HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (01): : 213 - 230
  • [4] Approximation and Estimation Bounds for Subsets of Reproducing Kernel Krein Spaces
    Gnecco, Giorgio
    NEURAL PROCESSING LETTERS, 2014, 39 (02) : 136 - 153
  • [5] Remarks on interpolation in reproducing kernel Hilbert spaces
    Bolotnikov, V
    Rodman, L
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 559 - 576
  • [6] Analysis of regularized least-squares in reproducing kernel Krein spaces
    Liu, Fanghui
    Shi, Lei
    Huang, Xiaolin
    Yang, Jie
    Suykens, Johan A. K.
    MACHINE LEARNING, 2021, 110 (06) : 1145 - 1173
  • [7] Learning with Operator-valued Kernels in Reproducing Kernel Krein Spaces
    Saha, Akash
    Balamurugan, P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [8] Fast learning in reproducing kernel Krein spaces via signed measures
    Liu, Fanghui
    Huang, Xiaolin
    Chen, Yingyi
    Suykens, Johan A. K.
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 388 - +
  • [9] Remarks on reproducing kernels of some function spaces
    Lions, JL
    FUNCTION SPACES, INTERPOLATION THEORY AND RELATED TOPICS, PROCEEDINGS, 2002, : 49 - 59
  • [10] Krein reproducing kernel modules in Clifford analysis
    Daniel Alpay
    Paula Cerejeiras
    Uwe Kähler
    Journal d'Analyse Mathématique, 2021, 143 : 253 - 288