ANALYTICAL SOLUTIONS OF PROBLEMS OF THERMOELASTICITY FOR MULTILAYERED BODIES WITH VARIABLE PROPERTIES

被引:4
|
作者
Kudinov, V. A. [1 ]
Kuznetsova, A. E. [1 ]
Eremin, A. V. [1 ]
Kotova, E. V. [1 ]
机构
[1] Samara State Tech Univ, Dept Theoret Basis Heat Engn & Flow Mech, 244 Molodogvardeyskaya St, Samara 443100, Russia
关键词
multilayer constructions; analytical solution; thermoelasticity problem; environmental variable physical properties; system of coordinate functions; Bubnov-Galyorkin orthogonal method;
D O I
10.14498/vsgtu1128
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The technics for the construction of approximate analytical solutions for the quasistatic problems of thermoelasticity (plane-stressed state, plane deformation) for the multilayered bodies with variable within limits of each layer physical properties of medium. The recursive method is 'used for the construction of systems of coordinate functions, satisfying the boundary matching conditions, given as the equality of radial (normal) stresses and displacements in the layer-contact points.
引用
收藏
页码:215 / 221
页数:7
相关论文
共 50 条
  • [1] ANALYTICAL SOLUTIONS OF THE QUASISTATIC THERMOELASTICITY TASK WITH VARIABLE PHYSICAL PROPERTIES OF A MEDIUM
    Kudinov, V. A.
    Kuznetsova, A. E.
    Eremin, A. V.
    Kotova, E. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2014, (02): : 130 - 135
  • [2] Solution of two-dimensional quasistatic problems of thermoelasticity for multilayered bodies
    Protsyuk B.V.
    Sinyuta V.M.
    Journal of Mathematical Sciences, 1998, 88 (3) : 364 - 367
  • [3] DYNAMICAL PROPERTIES OF THERMOELASTICITY PROBLEMS SOLUTIONS
    MOKRIK, RI
    PYRYEV, YA
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1980, (04): : 42 - 45
  • [4] EXACT ANALYTICAL SOLUTIONS OF 3-DIMENSIONAL PROBLEMS OF THERMOELASTICITY
    IZRAILEV, YL
    TRIVISH, VI
    MAIDANIK, MN
    LUBNYGERTSYK, AL
    SHILOVA, YS
    CHERNYSH, TA
    STRENGTH OF MATERIALS, 1983, 15 (05) : 620 - 626
  • [5] Correct analytical solutions to the thermoelasticity problems in a semi-plane
    Rychahivskyy, Andriy V.
    Tokovyy, Yuriy V.
    JOURNAL OF THERMAL STRESSES, 2008, 31 (11) : 1125 - 1145
  • [6] On the evolution of solutions of mixed problems in thermoelasticity of porous bodies with dipolar structure
    Marin Marin
    Andreas Öchsner
    Mohamed I. A. Othman
    Continuum Mechanics and Thermodynamics, 2022, 34 : 491 - 506
  • [7] On the evolution of solutions of mixed problems in thermoelasticity of porous bodies with dipolar structure
    Marin, Marin
    Oechsner, Andreas
    Othman, Mohamed I. A.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2022, 34 (02) : 491 - 506
  • [8] PROPERTIES OF SOLUTIONS OF THE DYNAMIC PROBLEMS OF THE GENERALIZED COUPLED THERMOELASTICITY
    MOKRIK, RI
    PYREV, IA
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1981, 45 (05): : 685 - 689
  • [9] Analytical solutions to the axisymmetric elasticity and thermoelasticity problems for an arbitrarily inhomogeneous layer
    Tokovyy, Yuriy
    Ma, Chien-Ching
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2015, 92 : 1 - 17
  • [10] Asymptotic solutions for generalized thermoelasticity with variable thermal material properties
    Wang, Y.
    Liu, D.
    Wang, Q.
    Zhou, J.
    ARCHIVES OF MECHANICS, 2016, 68 (03): : 181 - 202