SOME RESULTS ON QUADRILATERALS IN STEINER TRIPLE-SYSTEMS

被引:26
|
作者
STINSON, DR [1 ]
WEI, YJ [1 ]
机构
[1] UNIV NEBRASKA,CTR COMMUN & INFORMAT SCI,LINCOLN,NE 68588
关键词
D O I
10.1016/0012-365X(92)90143-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study quadrilaterals in Steiner triple systems. We present two recursive constructions for Steiner triple systems having no quadrilaterals. We also consider the maximum number of quadrilaterals a Steiner triple system of any given order can have. The upper hound is reached precisely when the Steiner triple system is the projective space PG(d, 2). Some recursive constructions for Steiner triple systems having 'many' quadrilaterals are also presented.
引用
收藏
页码:207 / 219
页数:13
相关论文
共 50 条
  • [1] ROTATIONAL STEINER TRIPLE-SYSTEMS
    CHO, CJ
    DISCRETE MATHEMATICS, 1982, 42 (2-3) : 153 - 159
  • [2] HALVING STEINER TRIPLE-SYSTEMS
    DAS, PK
    ROSA, A
    DISCRETE MATHEMATICS, 1992, 109 (1-3) : 59 - 67
  • [3] COLORING STEINER TRIPLE-SYSTEMS
    DEBRANDES, M
    PHELPS, KT
    RODL, V
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (02): : 241 - 249
  • [4] UNBALANCED STEINER TRIPLE-SYSTEMS
    HADDAD, L
    RODL, V
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 66 (01) : 1 - 16
  • [5] BICYCLIC STEINER TRIPLE-SYSTEMS
    CALAHANZIJLSTRA, R
    GARDNER, RB
    DISCRETE MATHEMATICS, 1994, 128 (1-3) : 35 - 44
  • [6] STEINER TRIPLE-SYSTEMS WITH AN INVOLUTION
    HARTMAN, A
    HOFFMAN, DG
    EUROPEAN JOURNAL OF COMBINATORICS, 1987, 8 (04) : 371 - 378
  • [7] ON THE DIMENSION OF STEINER TRIPLE-SYSTEMS
    ZEITLER, H
    ARS COMBINATORIA, 1985, 20A : 51 - 57
  • [8] SIMULTANEOUS DECOMPOSITIONS OF STEINER TRIPLE-SYSTEMS
    GRIGGS, TS
    MENDELSOHN, E
    ROSA, A
    ARS COMBINATORIA, 1994, 37 : 157 - 173
  • [9] ARCS AND OVALS IN STEINER TRIPLE-SYSTEMS
    LENZ, H
    ZEITLER, H
    LECTURE NOTES IN MATHEMATICS, 1982, 969 : 229 - 250
  • [10] CONTINUITY OF MENDELSOHN AND STEINER TRIPLE-SYSTEMS
    GRANNELL, MJ
    GRIGGS, TS
    PHELAN, JS
    DISCRETE MATHEMATICS, 1995, 138 (1-3) : 247 - 253