SOME INFINITE SUMMATION FORMULAS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS

被引:0
|
作者
SRIVASTA.HM
DAOUST, MC
机构
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:961 / &
相关论文
共 50 条
  • [1] A CLASS OF FINITE SUMMATION FORMULAS INVOLVING GENERALIZED HYPERGEOMETRIC-FUNCTIONS
    SRIVASTAVA, HM
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5A (03): : 311 - 320
  • [2] Infinite summation formulas of double hypergeometric functions
    Wang, Xiaoxia
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (05) : 347 - 364
  • [3] Infinite Summation Formulas for Triple Lauricella Hypergeometric Functions
    Hasanov A.
    Ergashev T.G.
    Journal of Mathematical Sciences, 2023, 274 (2) : 215 - 227
  • [4] Some Summation Theorems for Generalized Hypergeometric Functions
    Masjed-Jamei, Mohammad
    Koepf, Wolfram
    AXIOMS, 2018, 7 (02):
  • [5] Some finite summation formulas involving multivariable hypergeometric polynomials
    Djordjevic, LN
    Milosevic, DM
    Milovanovic, GV
    Srivastava, HM
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2003, 14 (04) : 349 - 361
  • [6] SOME INFINITE INTEGRALS INVOLVING WHITTAKER FUNCTIONS AND GENERALIZED HYPERGEOMETRIC POLYNOMIALS WITH THEIR APPLICATIONS
    SHAH, M
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 65 : 483 - &
  • [7] Some Formulas Involving Hypergeometric Functions in Four Variables
    Aydi, Hassen
    Verma, Ashish
    Younis, Jihad
    Lee, Jung Rye
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 130 (02): : 887 - 902
  • [8] SOME INFINITE INTEGRALS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS PSI2 AND FC
    KALLA, SL
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 1967, 37 : 195 - &
  • [9] Finite summation formulas of double hypergeometric functions
    Wang, Xiaoxia
    Chen, Yuwu
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (03) : 239 - 253
  • [10] On a new class of summation formulas involving the generalized hypergeometric F22 polynomial
    Arjun K. Rathie
    Adem Kılıçman
    Advances in Difference Equations, 2014