EXACT EXPONENT-LAMBDA OF THE AUTOCORRELATION FUNCTION FOR A SOLUBLE MODEL OF COARSENING

被引:35
|
作者
BRAY, AJ
DERRIDA, B
机构
[1] Department of Physics and Astronomy, The University
[2] Laboratoire de Physique Statistique, Ecole Normale Supérieure, 75231 Paris Cedex 05
[3] Service de Physique Théorique, Centre d'Etudes Nucléaires de Saclay
关键词
D O I
10.1103/PhysRevE.51.R1633
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The exponent λ that describes the decay of the autocorrelation function A(t) in a phase ordering system, A(t)∼L-(d-λ), where d is the dimension and L the characteristic length scale at time t, is calculated exactly for the time-dependent Ginzburg-Landau equation in d=1. We find λ=0.3993835.... We also show explicitly that a small bias of positive domains over negative gives a magnetization which grows in time as M(t)∼Lμ and prove that for the one-dimensional Ginzburg-Landau equation, μ=λ, exemplifying a general result. © 1995 The American Physical Society.
引用
收藏
页码:R1633 / R1636
页数:4
相关论文
共 50 条