Computational Design of Complex Materials Using Information Theory: from Physics-to Data-driven Multi-scale Molecular Models

被引:0
|
作者
Harmandaris, Vagelis [1 ,2 ]
Kalligiannaki, Evangelia [2 ]
Katsoulakis, Markos A. [3 ]
机构
[1] UOC, Iraklion, Greece
[2] IACM FORTH, Iraklion, Greece
[3] UMass Amherst, Amherst, MA USA
来源
ERCIM NEWS | 2018年 / 115期
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The development of novel materials with desirable properties, such as nanocomposites, polymers, colloids and biomolecular systems, relies heavily on the knowledge of their structure-property relationships. The prediction of such relationships is the subject of computational materials design. Molecular dynamics (MD) simulations at the atomistic level can provide quantitative information about structural and dynamical properties of molecular systems. The recent enormous advances in computational power allow us to perform intense atomistic-level simulations. However, the broad range of length and time scales appearing in such complex (e.g., macromolecular) materials still presents significant computational challenges, especially in tackling engineering and design tasks.
引用
收藏
页码:19 / 20
页数:2
相关论文
共 29 条
  • [1] Multi-scale Integration of Physics-based and Data-driven Models in Power Systems
    Xie, Le
    Zhang, Yun
    Ilic, Marija D.
    2012 IEEE/ACM THIRD INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS (ICCPS 2012), 2012, : 129 - 137
  • [2] Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing
    Wentao Yan
    Stephen Lin
    Orion L. Kafka
    Yanping Lian
    Cheng Yu
    Zeliang Liu
    Jinhui Yan
    Sarah Wolff
    Hao Wu
    Ebot Ndip-Agbor
    Mojtaba Mozaffar
    Kornel Ehmann
    Jian Cao
    Gregory J. Wagner
    Wing Kam Liu
    Computational Mechanics, 2018, 61 : 521 - 541
  • [3] Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing
    Yan, Wentao
    Lin, Stephen
    Kafka, Orion L.
    Lian, Yanping
    Yu, Cheng
    Liu, Zeliang
    Yan, Jinhui
    Wolff, Sarah
    Wu, Hao
    Ndip-Agbor, Ebot
    Mozaffar, Mojtaba
    Ehmann, Kornel
    Cao, Jian
    Wagner, Gregory J.
    Liu, Wing Kam
    COMPUTATIONAL MECHANICS, 2018, 61 (05) : 521 - 541
  • [4] On Multi-scale Computational Design of Structural Materials Using the Topological Derivative
    Oliver, J.
    Ferrer, A.
    Cante, J. C.
    Giusti, S. M.
    Lloberas-Valls, O.
    ADVANCES IN COMPUTATIONAL PLASTICITY: A BOOK IN HONOUR OF D. ROGER J. OWEN, 2018, 46 : 289 - 308
  • [5] UNCERTAINTY QUANTIFICATION IN METALLIC ADDITIVE MANUFACTURING THROUGH DATA-DRIVEN MODELLING BASED ON MULTI-SCALE MULTI-PHYSICS MODELS AND LIMITED EXPERIMENT DATA
    Wang, Zhuo
    Jiang, Chen
    Horstemeyer, Mark F.
    Hu, Zhen
    Chen, Lei
    PROCEEDINGS OF THE ASME 2020 15TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2020), VOL 1A, 2020,
  • [6] Data-driven selective sampling for marine vehicles using multi-scale paths
    Manjanna, Sandeep
    Dudek, Gregory
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 6111 - 6117
  • [7] SysMod: the ISCB community for data-driven computational modelling and multi-scale analysis of biological systems
    Draeger, Andreas
    Helikar, Tomas
    Barberis, Matteo
    Birtwistle, Marc
    Calzone, Laurence
    Chaouiya, Claudine
    Hasenauer, Jan
    Karr, Jonathan R.
    Niarakis, Anna
    Martinez, Maria Rodriguez
    Saez-Rodriguez, Julio
    Thakar, Juilee
    BIOINFORMATICS, 2021, 37 (21) : 3702 - 3706
  • [8] Surrogate models in machine learning for computational stochastic multi-scale modelling in composite materials design
    Liu, Bokai
    Lu, Weizhuo
    INTERNATIONAL JOURNAL OF HYDROMECHATRONICS, 2022, 5 (04) : 336 - 365
  • [9] Multi-scale inverse design of optical metasurfaces using physics-informed computational intelligence
    Lindsay, Marshall B.
    Varner, Andy G.
    Kovaleski, Scott D.
    Veal, Charlie T.
    Anderson, Derek T.
    Price, Stanton R.
    Price, Steven R.
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 207 - 209
  • [10] Estimating multi-scale irrigation amounts using multi-resolution soil moisture data: A data-driven approach using PrISM
    Paolini, Giovanni
    Escorihuela, Maria Jose
    Merlin, Olivier
    Laluet, Pierre
    Bellvert, Joaquim
    Pellarin, Thierry
    AGRICULTURAL WATER MANAGEMENT, 2023, 290