HIERARCHIC ORGANIZATION OF DOMAINS IN GLOBULAR-PROTEINS

被引:217
作者
ROSE, GD
机构
[1] Department of Chemistry University of Delawareb Newark
关键词
D O I
10.1016/0022-2836(79)90363-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An automatic procedure is developed for the identification of domains in globular proteins from X-ray elucidated co-ordinates. Using this tool, domains are shown to be iteratively decomposable into subdomains, leading to a hierarchic molecular architecture. There is no convenient geometry that will fully characterize the atom by atom interdigitation at an interface between domains, and the strategy adopted here was devised to reduce this unwieldy three-dimensional problem to a closely approximating companion analysis in a plane. These analytically derived domain choices can be used subsequently to construct computer-generated, space-filling, color-coded views of the domains; and when this is done, the derived domains are seen to be completely resolved. The number of domains in a protein is a mathematically well-behaved function of the chain length, lending support to the supposition that the domains are an implicit structural consequence of the folding process. A spectrum of domains ranging in size from whole protein monomers to the individual units of secondary structure is apparent in each of the 22 proteins analyzed here. The hierarchic organization of structural domains is evidence in favor of an underlying protein folding process that proceeds by hierarchic condensation. In this highly constrained model, every pathway leading to the native state can be described by a tree of local folding interactions. © 1979.
引用
收藏
页码:447 / 470
页数:24
相关论文
共 36 条
[1]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[2]   STRUCTURE OF PROTEINS - PACKING OF ALPHA-HELICES AND PLEATED SHEETS [J].
CHOTHIA, C ;
LEVITT, M ;
RICHARDSON, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (10) :4130-4134
[3]  
Davis M., 1958, COMPUTABILITY UNSOLV
[4]   STRUCTURE OF PAPAIN [J].
DRENTH, J ;
JANSONIUS, JN ;
KOEKOEK, R ;
SWEN, HM ;
WOLTHERS, BG .
NATURE, 1968, 218 (5145) :929-+
[5]   INTERACTIVE COMPUTER SURFACE GRAPHICS APPROACH TO STUDY OF ACTIVE-SITE OF BOVINE TRYPSIN [J].
FELDMANN, RJ ;
BING, DH ;
FURIE, BC ;
FURIE, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1978, 75 (11) :5409-5412
[6]   RESPECTIVE ROLES OF SHORT-RANGE AND LONG-RANGE INTERACTIONS IN PROTEIN FOLDING [J].
GO, N ;
TAKETOMI, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1978, 75 (02) :559-563
[7]  
GO N, INT J PEPTIDE PROTEI
[8]  
GOLDSTEIN H, 1950, CLASSICAL MECHANICS, pCH5
[9]   MECHANISMS OF MULTIPHASIC KINETICS IN FOLDING AND UNFOLDING OF GLOBULAR PROTEINS [J].
KANEHISA, MI ;
TSONG, TY .
JOURNAL OF MOLECULAR BIOLOGY, 1978, 124 (01) :177-194
[10]   PROTEIN-FOLDING DYNAMICS [J].
KARPLUS, M ;
WEAVER, DL .
NATURE, 1976, 260 (5550) :404-406