THE ASYMPTOTIC BEHAVIOR OF INTEGRABLE FUNCTIONS

被引:1
|
作者
Niculescu, Constantin [1 ]
Popovici, Florin [2 ]
机构
[1] Univ Craiova, Dept Math, RO-200585 Craiova, Romania
[2] Coll Grigore Moisil, Brasov, Romania
关键词
Lebesgue integral; density; convergence in density;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a density d defined on the Borel subsets of [0,infinity), the limit in density of a function f : [0, infinity) -> R is zero (abbreviated, (d)-lim(x ->infinity) f(x) = 0) if there exists a set S of zero density such that f(x) -> 0 as x runs to infinity outside S. It is proved that the behavior at infinity of every Lebesgue integrable function f is an element of L-1(0,infinity) satisfies the relations (d((n)))-lim(x ->infinity) (pi(n )(k=0)ln((k) )x) f(x) = 0, where (d((n)))(n) is a scale of densities including the usual one, d((0))(A) = lim(r ->infinity) m(A boolean AND[0,r))/r.
引用
收藏
页码:157 / 167
页数:11
相关论文
共 50 条