ESTIMATION OF THE LARGEST LOCATION PARAMETER OF EXPONENTIAL-DISTRIBUTIONS

被引:4
|
作者
MISRA, N [1 ]
ANAND, R [1 ]
SINGH, H [1 ]
机构
[1] PANJAB UNIV,DEPT STAT,CHANDIGARH 160014,INDIA
关键词
BEST LOCATION EQUIVARIANT ESTIMATOR; EXTENDED MAXIMUM LIKELIHOOD ESTIMATOR; MARGINAL MAXIMUM LIKELIHOOD ESTIMATOR; MEAN SQUARED ERROR; PITMAN MEASURE OF CLOSENESS; SQUARED ERROR LOSS FUNCTION;
D O I
10.1080/03610929408831421
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Independent random samples (of possibly unequal sample sizes) are drawn from k (greater-than-or-equal-to 2) exponential populations having unknown location parameters lambda1,...,lambda(k) and known scale parameters sigma1,...,sigma(k). The problem of estimating theta(k)=max(lambda1,...,lambda(k)) is investigated. Under the squared error loss function, some estimators which are better than the usual estimators are obtained. These estimators are also compared with respect to the Pitman's (1937) measure of closeness.
引用
收藏
页码:2865 / 2880
页数:16
相关论文
共 50 条