NONCONVOLUTION OPERATORS WITH OSCILLATING-KERNELS THAT MAP B-1(0,1) INTO ITSELF AND MAP L(P) INTO

被引:0
|
作者
SAMPSON, G
机构
[1] Department of Mathematics, Auburn University, Auburn
关键词
D O I
10.1006/jmaa.1995.1161
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here we consider the kernels Omega(1)(y, u) = K(y, u)e(i\y-u\a) for a > I. We show that the operators Tf(y) = integral (Omega(1)(y + 1/2, u) - Omega(1)(y, u))f(u) du map B(R(n)) into itself. We also show that the operators integral (Omega(1)(y, u)) f(u) du map L(p) into itself for p > 1. (C) 1995 Academic Press, Inc.
引用
收藏
页码:71 / 95
页数:25
相关论文
共 50 条