Swinging in Imaginary Time More on the Not-So-Simple Pendulum

被引:0
|
作者
Saclioglu, Cihan [1 ]
机构
[1] Sabanci Univ, Phys, Istanbul, Turkey
来源
关键词
Pendulum; Jacobi elliptic functions; tunneling; WKB; instantons;
D O I
10.1007/s12045-010-0012-x
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
When the small angle approximation is not made, the exact solution of the simple pendulum is a Jacobian elliptic function with one real and one imaginary period. Far from being a physically meaningless mathematical curiosity, the second period represents the imaginary time the pendulum takes to swing upwards and tunnel through the potential barrier in the semi-classical WKB approximation(1) in quantum mechanics. The tunneling here provides a simple illustration of similar phenomena in Yang{Mills theories describing weak and strong interactions.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 50 条
  • [1] Swinging in imaginary timeMore on the not-so-simple pendulum
    Cihan Saclioglu
    Resonance, 2010, 15 (2) : 104 - 115
  • [2] Not-so-simple Simon
    Cox, KR
    MEDICAL JOURNAL OF AUSTRALIA, 2001, 175 (05) : 268 - 269
  • [3] Not-so-simple setae
    Mellon, DeForest, Jr.
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2011, 214 (05): : 871 - 871
  • [4] A not-so-simple measure
    Fann, James I.
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2015, 149 (06): : 1651 - 1652
  • [5] A not-so-simple substitution
    不详
    LAB ANIMAL, 2016, 45 (03) : 87 - 87
  • [6] Not-so-simple minds
    Frewer, A
    Hanefeld, F
    SCIENCE, 2000, 289 (5486) : 1878 - 1878
  • [7] A not-so-simple collapse
    Raw, E
    Hudsmith, L
    Aithal, GP
    Jaspan, T
    JOURNAL OF THE ROYAL SOCIETY OF MEDICINE, 2003, 96 (09) : 459 - 460
  • [8] A Not-So-Simple Idea
    Spahich, Niki
    Erlich, Henry
    SCIENTIST, 2023, 37 (02): : 45 - 46
  • [9] The not-so-simple truth
    Huff, C
    HOSPITALS & HEALTH NETWORKS, 2005, 79 (08): : 44 - +
  • [10] The simple book of not-so-simple puzzles
    Giblin, Peter
    MATHEMATICAL GAZETTE, 2009, 93 (528): : 569 - 569