FALSITY OF A CONJECTURE ON ORTHOGONAL STEINER TRIPLE SYSTEMS

被引:0
|
作者
ROSA, A
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:A686 / &
相关论文
共 50 条
  • [1] Skew-orthogonal Steiner triple systems
    Dukes, P
    Mendelsohn, E
    JOURNAL OF COMBINATORIAL DESIGNS, 1999, 7 (06) : 431 - 440
  • [2] THE SPECTRUM OF ORTHOGONAL STEINER TRIPLE-SYSTEMS
    COLBOURN, CJ
    GIBBONS, PB
    MATHON, R
    MULLIN, RC
    ROSA, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (02): : 239 - 252
  • [3] On a Conjecture of Erdos on Locally Sparse Steiner Triple Systems
    Glock, Stefan
    Kuhn, Daniela
    Lo, Allan
    Osthus, Deryk
    COMBINATORICA, 2020, 40 (03) : 363 - 403
  • [5] Sets of three pairwise orthogonal Steiner triple systems
    Dinitz, JH
    Dukes, P
    Ling, ACH
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 101 (01) : 90 - 116
  • [6] MAXIMAL NUMBER OF PAIRWISE ORTHOGONAL STEINER TRIPLE SYSTEMS
    GROSS, KB
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 19 (03) : 256 - 263
  • [7] CYCLICAL STEINER TRIPLE-SYSTEMS ORTHOGONAL TO THEIR OPPOSITES
    SCHREIBER, S
    DISCRETE MATHEMATICS, 1989, 77 (1-3) : 281 - 284
  • [8] On a Conjecture of Erdős on Locally Sparse Steiner Triple Systems
    Stefan Glock
    Daniela Kühn
    Allan Lo
    Deryk Osthus
    Combinatorica, 2020, 40 : 363 - 403
  • [9] Novak's conjecture on cyclic Steiner triple systems and its generalization
    Feng, Tao
    Horsley, Daniel
    Wang, Xiaomiao
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 184
  • [10] A proof of the Elliott-Rodl conjecture on hypertrees in Steiner triple systems
    Im, Seonghyuk
    Kim, Jaehoon
    Lee, Joonkyung
    Methuku, Abhishek
    FORUM OF MATHEMATICS SIGMA, 2024, 12