KOLMOGOROV WIDTHS OF CLASSES OF PERIODIC-FUNCTIONS OF ONE AND SEVERAL VARIABLES

被引:0
|
作者
GALEEV, EM
机构
来源
MATHEMATICS OF THE USSR-IZVESTIYA | 1990年 / 54卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The order of Kolmogorov widths d(N)(W-approximately-pBAR-alphaBAR, L-approximately-q) are determined for the class W-approximately-pBAR-alphaBAR = intersection-1m W-approximately-p(i)-alpha-i that is the intersection of classes of periodic functions of one variable of "higher" smoothness, in the space L-approximately-q for 1 < q < infinity, and estimates from above for "low" smoothness, and also the order of Kolmogorov widths d(N)(H-approximately-p-r, L-approximately-q) is calculated for periodic functions of several variables in the space L-approximately-q for 1 < p less-than-or-equal-to q less-than-or-equal-to 2. The estimate from below for d(N) (H-approximately-p-r, L-approximately-q) reduces to the estimate from below of the width of a finite-dimensional set whose width is determined. Bibliography: 28 titles.
引用
收藏
页码:435 / 448
页数:14
相关论文
共 50 条