LOCAL-GLOBAL PRINCIPLES FOR WITT RINGS

被引:2
|
作者
EFRAT, I [1 ]
机构
[1] HEBREW UNIV JERUSALEM,INST ADV STUDIES,IL-91904 JERUSALEM,ISRAEL
关键词
D O I
10.1016/0022-4049(93)90127-F
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper investigates the connection between the Witt and Witt-Grothendieck rings of a field K and the corresponding rings of a given collection H of separable algebraic extensions of K. In particular, it deals with the question whether the former rings are the ''sheaf products'' of the latter rings. If H consists of pro-2 extensions and is closed in the natural topology then this happens precisely when the 2-Galois group of K is the free pro-2 product of the 2-Galois groups of the fields in H. This result is used to classify the quadratic forms over the field of totally real numbers, and more generally, over real-projective fields.
引用
收藏
页码:153 / 166
页数:14
相关论文
共 50 条
  • [1] ON REAL LOCAL-GLOBAL PRINCIPLES
    KRUSKEMPER, M
    MATHEMATISCHE ZEITSCHRIFT, 1990, 204 (01) : 145 - 151
  • [2] LOCAL-GLOBAL RESULTS FOR REGULAR RINGS
    VANOYSTAEYEN, F
    VANGEEL, J
    COMMUNICATIONS IN ALGEBRA, 1976, 4 (09) : 811 - 821
  • [3] LOCAL-GLOBAL PRINCIPLES FOR THE BRAUER GROUP
    WIESEND, G
    MANUSCRIPTA MATHEMATICA, 1995, 86 (04) : 455 - 466
  • [4] Local-global principles for algebraic covers
    Debes, P
    Douai, JC
    ISRAEL JOURNAL OF MATHEMATICS, 1998, 103 (1) : 237 - 257
  • [5] Local-global principles for algebraic covers
    Pierre Dèbes
    Jean-Claude Douai
    Israel Journal of Mathematics, 1998, 103 : 237 - 257
  • [6] Local-global principles for Galois cohomology
    Harbater, David
    Hartmann, Julia
    Krashen, Daniel
    COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (01) : 215 - 253
  • [7] Local-global principles in circle packings
    Fuchs, Elena
    Stange, Katherine E.
    Zhang, Xin
    COMPOSITIO MATHEMATICA, 2019, 155 (06) : 1118 - 1170
  • [8] LOCAL-GLOBAL CRITERIA FOR OUTER PRODUCT RINGS
    ESTES, DR
    MATIJEVIC, JR
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (06): : 1353 - 1360
  • [9] Local-global principles for 1-motives
    Harari, David
    Szamuely, Tamas
    DUKE MATHEMATICAL JOURNAL, 2008, 143 (03) : 531 - 557
  • [10] Local-global principles for representations of quadratic forms
    Ellenberg, Jordan S.
    Venkatesh, Akshay
    INVENTIONES MATHEMATICAE, 2008, 171 (02) : 257 - 279