SOLVABLE SUBMANIFOLDS OF TANGENT BUNDLE AND J. MATHER GENERIC LINEAR EQUATIONS

被引:0
|
作者
Fukuda, Takuo [1 ]
Janeczko, Stanislaw [2 ,3 ]
机构
[1] Nihon Univ, Dept Math, Coll Human & Sci, Setagaya Ku, Sakurajousui 3-25-40, Tokyo 1568550, Japan
[2] Inst Matemat PAN, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[3] Warsaw Univ Sci & Technol, Wydzial Matemat & Nauk Informacyjnych, Ul Koszykowa 75, PL-00662 Warsaw, Poland
关键词
Symplectic manifold; singularities; Hamiltonian systems; Poisson-Lie algebras;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using J. Mather results on solutions of generic linear equations the smooth solvability of implicit differential systems is investigated. Implicit Hamiltonian systems are considered and algebraic version of J. Mather theorem was applied in this case. For the generalized Hamiltonian systems defined by P.A.M. Dirac on smooth constraints we find the corresponding Poisson-Lie algebras as a basic symplectic invariants of submanifolds in the symplectic space.
引用
收藏
页码:233 / 255
页数:23
相关论文
共 4 条