New record graphs in the degree-diameter problem

被引:0
|
作者
Loz, Eyal [1 ]
Siraj, Jozef [1 ]
机构
[1] Univ Auckland, Dept Math, Auckland, New Zealand
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1994, Dinneen and Hafner (Networks 24 No.7, 359-367) published a table of largest orders of graphs of given degree up to 15 and diameter upto 10, known to that date. The table also contained 48 new values found by the authors with the help of computer searches over Cayley graphs of semidirect products of (mostly) cyclic groups. Prior to our work, only relatively few values in the table have been improved; updates have been maintained on the web. With the help of voltage graphs in combination with random computer search we have substantially improved more than half of the values in (all earlier updates of) the table.
引用
收藏
页码:63 / 80
页数:18
相关论文
共 50 条
  • [1] THE DEGREE-DIAMETER PROBLEM FOR OUTERPLANAR GRAPHS
    Dankelmann, Peter
    Jonck, Elizabeth
    Vetrik, Tomas
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 823 - 834
  • [2] The degree-diameter problem for plane graphs with pentagonal faces
    DU Preez, Brandon
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2025, 91 : 104 - 147
  • [3] The degree-diameter problem for circulant graphs of degree 8 and 9
    Lewis, Robert R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [4] The Degree-Diameter Problem for Claw-Free Graphs and Hypergraphs
    Dankelmann, Peter
    Vetrik, Tomas
    JOURNAL OF GRAPH THEORY, 2014, 75 (02) : 105 - 123
  • [5] The degree-diameter problem for circulant graphs of degrees 10 and 11
    Lewis, Robert R.
    DISCRETE MATHEMATICS, 2018, 341 (09) : 2553 - 2566
  • [6] The degree-diameter problem for several varieties of Cayley graphs I: The Abelian case
    Dougherty, R
    Faber, V
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 17 (03) : 478 - 519
  • [7] The degree-diameter problem for sparse graph classes
    Pineda-Villavicencio, Guillermo
    Wood, David R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (02):
  • [8] Improved lower bounds on the degree-diameter problem
    Zhang, Tao
    Ge, Gennian
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 49 (02) : 135 - 146
  • [9] t-STRONG CLIQUES AND THE DEGREE-DIAMETER PROBLEM
    Sleszynska-Nowak, M.
    Debski, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 1057 - 1061
  • [10] t-STRONG CLIQUES AND THE DEGREE-DIAMETER PROBLEM
    Debski, Michal
    Sleszynska-Nowak, Malgorzata
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (04) : 3017 - 3029