MAHLER MEASURE AND INTEGRALS OF HYPERGEOMETRIC FUNCTIONS

被引:0
|
作者
Benferhat, Leila [1 ]
机构
[1] USTHB, BP 32 El Alia, Bab Ezzouar, Algeria
关键词
Mahler measure; Dirichlet L-series; hypergeometric functions; differential equations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Boyd studied in [4] the Mahler measure of some families of elliptic curves given by reciprocal polynomials depending on a real parameter l. These curves are of genus 1 except for the singular values of the parameter l and do not vanish on the torus for l large enough. Using the Mahler measure, we prove that the Picard-Fuchs equation associated to one Boyd's family admits explicit solutions at the singularities of the equation and that we can express certain Dirichlet L-series L(chi, 2) as integrals of functions related to the hypergeometric functions F(1/2, 1/2, 1; z).
引用
收藏
页码:49 / 59
页数:11
相关论文
共 50 条
  • [1] INTEGRALS OF HYPERGEOMETRIC FUNCTIONS
    SINGAL, RP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (03): : 559 - &
  • [2] INTEGRALS OF HYPERGEOMETRIC FUNCTIONS
    BUSCHMAN, RG
    MATHEMATISCHE ZEITSCHRIFT, 1965, 89 (01) : 74 - &
  • [3] Feynman Integrals and Hypergeometric Functions
    Luna Garcia, Hector
    Maria Garcia, Luz
    Mares, Ruben
    Ortega, Enrique
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [4] Some integrals of hypergeometric functions
    Biro, A.
    ACTA MATHEMATICA HUNGARICA, 2017, 152 (01) : 58 - 71
  • [5] Feynman integrals and hypergeometric functions
    Garcia, Hector Luna
    Garcia, Luz Maria
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2014, 5
  • [6] INTEGRALS OF CONFLUENT HYPERGEOMETRIC FUNCTIONS
    NG, EW
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (02): : 181 - &
  • [7] Some integrals of hypergeometric functions
    A. Biró
    Acta Mathematica Hungarica, 2017, 152 : 58 - 71
  • [8] Certain integrals of generalized hypergeometric and confluent hypergeometric functions
    Kumar, Dinesh
    SIGMAE, 2016, 5 (02): : 8 - 18
  • [9] Feynman integrals as A-hypergeometric functions
    Leonardo de la Cruz
    Journal of High Energy Physics, 2019
  • [10] Evaluation of integrals with hypergeometric and logarithmic functions
    Sofo, Anthony
    OPEN MATHEMATICS, 2018, 16 : 63 - 74