MASTER EQUATION FOR SYMPATHETIC COOLING OF TRAPPED-PARTICLES

被引:19
|
作者
LEWENSTEIN, M
CIRAC, JI
ZOLLER, P
机构
[1] UNIV CASTILLA LA MANCHA, DEPT FIS APLICADA, E-13071 CIUDAD REAL, SPAIN
[2] UNIV INNSBRUCK, INST THEORET PHYS, A-6020 INNSBRUCK, AUSTRIA
[3] POLISH ACAD SCI, CTR FIZ TEORET, PL-02668 WARSAW, POLAND
来源
PHYSICAL REVIEW A | 1995年 / 51卷 / 06期
关键词
D O I
10.1103/PhysRevA.51.4617
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A model for cooling a system of bosons in a harmonic trap via their interactions with a thermal bath of other particles is studied. The master equation describing the evolution of the system is derived for an arbitrary number of spatial dimensions. This equation is characterized by transition rates between trap levels. We present an analytic approximation for these rates and compare it with exact formulas, derived for the case of an even number of spatial dimensions. Analytic expressions show very good agreement with the exact ones for a wide range of parameters. We also discuss the cooling dynamics in terms of the approximated rates. © 1995 The American Physical Society.
引用
收藏
页码:4617 / 4627
页数:11
相关论文
共 50 条