We study the self-adjoint extensions of the spatial part of the D'Alembert operator in a spacetime with two changes of signature. We identify a set of boundary conditions, parametrized by U(2) matrices, which correspond to Dirichlet boundary conditions for the fields, and from which we argue against the suggestion that regions of signature change can isolate singularities.
机构:
Corvinus Univ Budapest, Dept Math, IX Fovam Ter 13-15, H-1093 Budapest, Hungary
Eotvos Lorand Univ, Dept Appl Anal & Computat Math, Pazmany Peter Setany 1-C, H-1117 Budapest, HungaryCorvinus Univ Budapest, Dept Math, IX Fovam Ter 13-15, H-1093 Budapest, Hungary
Tarcsay, Zsigmond
Sebestyen, Zoltan
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Dept Appl Anal & Computat Math, Pazmany Peter Setany 1-C, H-1117 Budapest, HungaryCorvinus Univ Budapest, Dept Math, IX Fovam Ter 13-15, H-1093 Budapest, Hungary
机构:
Institute of Mechanical Engineering Problems V.O.Bolshoy pr.61,199178 St Petersburg RussiaInstitute of Mechanical Engineering Problems V.O.Bolshoy pr.61,199178 St Petersburg Russia
S.A.NAZAROV
J.SOKOLOWSKI
论文数: 0引用数: 0
h-index: 0
机构:
Institut Elie Cartan Laboratoire de Mathématiques Université Henri Poincaré NancyI B.P.239 54506 Vandoeuvrelès Nancy Cedex France and Systems Research Institute of the Polish Academy of Sciences ul.Newelska601-447Warszawa PolandInstitute of Mechanical Engineering Problems V.O.Bolshoy pr.61,199178 St Petersburg Russia